【BZOJ3236】【AHOI2013】作业 线段树 分治 树状数组
题目描述
给你一个长度为\(n\)的数列,还有\(m\)个询问,对于每个询问\((l,r,a,b)\),输出1.区间\([l,r]\)有多少范围在\([a,b]\)的数;2.区间\([l,r]\)有多少范围在\([a,b]\)的权值。
\(n\leq 100000,m\leq 1000000\)
题解
这道题莫队可以水过。
这里讲一个更优秀的算法。
建一棵权值线段树。每一个点存它代表的范围内所有数的下标。
一个询问对应权值线段树中的一些点。每个点要求出\([l,r]\)内的数的个数和不同的数的个数。第一问可以乱搞。第二问直接排序后用树状数组维护每个数最后一次出现的位置然后离线乱搞。
每个点会在根到这个点的路径上各插入一次,所以总的点数是\(n\log n\)。
总的时间复杂度是\(O((n+m)\log^2 n)\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
#include<vector>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void sort(int &a,int &b)
{
if(a>b)
swap(a,b);
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
char str[100];
sprintf(str,"%s.in",s);
freopen(str,"r",stdin);
sprintf(str,"%s.out",s);
freopen(str,"w",stdout);
#endif
}
struct ques
{
int l,r,a,b,id;
};
vector<ques> q[200010];
vector<pii> c[200010];
struct node
{
int l,r,ls,rs;
};
node a[200010];
int cnt;
int rt;
void build(int &p,int l,int r)
{
p=++cnt;
a[p].l=l;
a[p].r=r;
if(l==r)
return;
int mid=(l+r)>>1;
build(a[p].ls,l,mid);
build(a[p].rs,mid+1,r);
}
void build2(int p)
{
if(a[p].l==a[p].r)
return;
int mid=(a[p].l+a[p].r)>>1;
for(vector<pii>::iterator x=c[p].begin();x!=c[p].end();x++)
if(x->second<=mid)
c[a[p].ls].push_back(*x);
else
c[a[p].rs].push_back(*x);
build2(a[p].ls);
build2(a[p].rs);
}
void add(int &p,ques &v)
{
if(v.a<=a[p].l&&v.b>=a[p].r)
{
q[p].push_back(v);
return;
}
int mid=(a[p].l+a[p].r)>>1;
if(v.a<=mid)
add(a[p].ls,v);
if(v.b>mid)
add(a[p].rs,v);
}
int ans[1000010];
int ans2[1000010];
int d[100010];
int e[100010];
int f[100010];
int n,m;
int bt[100010];
int bt2[100010];
int last[100010];
void add(int x,int v)
{
for(;x<=n;x+=x&-x)
bt[x]+=v;
}
int sum(int x)
{
int s=0;
for(;x;x-=x&-x)
s+=bt[x];
return s;
}
void add2(int x,int v)
{
for(;x<=n;x+=x&-x)
bt2[x]+=v;
}
int sum2(int x)
{
int s=0;
for(;x;x-=x&-x)
s+=bt2[x];
return s;
}
void rd(int &s)
{
int c;
while((c=getchar())<'0'||c>'9');
s=c-'0';
while((c=getchar())>='0'&&c<='9')
s=s*10+c-'0';
}
int cmp(ques a,ques b)
{
return a.r<b.r;
}
int main()
{
open("bzoj3236");
scanf("%d%d",&n,&m);
int i,x;
build(rt,1,n);
for(i=1;i<=n;i++)
{
rd(x);
c[1].push_back(pii(i,x));
}
build2(rt);
ques v;
for(i=1;i<=m;i++)
{
rd(v.l);
rd(v.r);
rd(v.a);
rd(v.b);
v.id=i;
add(rt,v);
}
int j;
for(i=1;i<=cnt;i++)
{
int sz2=q[i].size();
if(!sz2)
continue;
int sz=c[i].size();
int k=1;
for(j=1;j<=sz;j++)
{
d[j]=c[i][j-1].first;
f[j]=c[i][j-1].second;
}
sort(q[i].begin(),q[i].end(),cmp);
while(k<=sz2&&q[i][k-1].r<d[1])
k++;
for(j=1;j<=sz;j++)
{
e[j]=last[f[j]];
last[f[j]]=j;
if(e[j])
add(e[j],-1);
add(j,1);
add2(j,1);
while(k<=sz2&&(j==sz||q[i][k-1].r<d[j+1]))
{
int l=lower_bound(d+1,d+sz+1,q[i][k-1].l)-d;
ans[q[i][k-1].id]+=sum(j)-sum(l-1);
ans2[q[i][k-1].id]+=sum2(j)-sum2(l-1);
k++;
}
}
for(j=1;j<=sz;j++)
{
if(last[f[j]])
add(last[f[j]],-1);
last[f[j]]=0;
add2(j,-1);
}
}
for(i=1;i<=m;i++)
printf("%d %d\n",ans2[i],ans[i]);
return 0;
}
【BZOJ3236】【AHOI2013】作业 线段树 分治 树状数组的更多相关文章
- BZOJ3236 [Ahoi2013]作业 【莫队 + 树状数组】
题目链接 BZOJ3236 题解 没想到这题真的是如此暴力 #include<algorithm> #include<iostream> #include<cstring ...
- [bzoj3809]Gty的二逼妹子序列/[bzoj3236][Ahoi2013]作业
[bzoj3809]Gty的二逼妹子序列/[bzoj3236][Ahoi2013]作业 bzoj bzoj 题目大意:一个序列,m个询问在$[l,r]$区间的$[x,y]$范围内的数的个数/种类. ...
- BZOJ3236[Ahoi2013]作业——莫队+树状数组/莫队+分块
题目描述 输入 输出 样例输入 3 4 1 2 2 1 2 1 3 1 2 1 1 1 3 1 3 2 3 2 3 样例输出 2 2 1 1 3 2 2 1 提示 N=100000,M=1000000 ...
- [BZOJ3236][AHOI2013]作业:树套树/莫队+分块
分析 第一问随便搞,直接说第二问. 令原数列为\(seq\),\(pre_i\)为\(seq_i\)这个值上一个出现的位置,于是可以简化询问条件为: \(l \leq i \leq r\) \(a \ ...
- [BZOJ3236]:[Ahoi2013]作业(莫队+分块)
题目传送门 题目描述 此时已是凌晨两点,刚刚做了$Codeforces$的小$A$掏出了英语试卷.英语作业其实不算多,一个小时刚好可以做完.然后是一个小时可与做完的数学作业,接下来是分别都是一个小时可 ...
- 树分治&树链剖分相关题目讨论
预备知识 树分治,树链剖分 poj1741 •一棵有n个节点的树,节点之间的边有长度.方方方想知道,有多少个点对距离不超过m 题解 点分治模板题.详见我早上写的http://www.cnblogs ...
- BZOJ3236:[AHOI2013]作业(莫队,分块)
Description Input Output Sample Input 3 4 1 2 2 1 2 1 3 1 2 1 1 1 3 1 3 2 3 2 3 Sample Output 2 2 1 ...
- 【莫队算法】【权值分块】bzoj3236 [Ahoi2013]作业
莫队显然.然后维护转移的时候如果用树状数组,则很容易TLE.所以用权值分块维护转移. 总复杂度O(m*sqrt(n)). #include<cstdio> #include<algo ...
- bzoj3809 Gty的二逼妹子序列 & bzoj3236 [Ahoi2013]作业 莫队+分块
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3809 https://lydsy.com/JudgeOnline/problem.php?id ...
随机推荐
- Python-SMTP发送邮件(HTML、图片、附件)
前言: SMTP(Simple Mail Transfer Protocol)即简单邮件传输协议,它是一组用于由源地址到目的地址传送邮件的规则,由它来控制信件的中转方式. 一.Python发送HTML ...
- 原生jS之-去掉字符串开头和结尾的空字符
怎么解决这个问题?? 思路就是我们利用正则匹配到所谓的空格,然后替换为空字符,我们要用到的是str的replace API 代码如下: <!DOCTYPE html> <html l ...
- iOS蓝牙开发之iBeacon技术
iBeacon组成信息: 1 .UUID(universally unique identifier):一个128位的唯一标识一个或多个Beacon基站为特定类型或特定的组织. 2. Major:一个 ...
- iOS数据存储-钥匙串存储
2017.11.20 14:41* 字数 227 阅读 678评论 0喜欢 0 钥匙串介绍 1. 表示设备唯一号的标识,在IOS7中要么被禁止使用,要么重新安装程序后两次获取的标识符不一样. 2. ...
- CSS小东西
1.表格列自动均分 table-layout:fixed; 2.单元格内容自动换行 word-wrap:break-word;
- Python3练习题 018:打印星号菱形
Python的内置方法 str.center(width [, fillchar]) 就能轻而易举打印出来:str即是数量不等的星号,width即是最大宽度(7个空格),默认填充字符fillchar就 ...
- laravel创建项目
composer create-project --prefer-dist laravel/laravel=5.5.* blog
- scala flatmap、reduceByKey、groupByKey
1.test.txt文件中存放 asd sd fd gf g dkf dfd dfml dlf dff gfl pkdfp dlofkp // 创建一个Scala版本的Spark Context va ...
- WPF如何实现TreeView节点重命名
我们经常看到一些软件比如酷狗音乐,在对列表右键进行重命名的时候,当前列表会泛白并且进入可编辑状态,当我们更改完成后就会并进入非编辑状态,这些具体是怎么实现的呢?下面的方法也许会提供一些思路,下面的Tr ...
- AVL树,红黑树
AVL树 https://baike.baidu.com/item/AVL%E6%A0%91/10986648 在计算机科学中,AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高 ...