【BZOJ3992】【SDOI2015】序列统计 原根 NTT
题目大意
有一个集合\(s\),里面的每个数都\(\geq0\)且\(<m\)。
问有多少个长度为\(n\)的数列满足这个数列所有数的乘积模\(m\)为\(x\)。答案模\(1004535809\)。
\(n\leq {10}^9,m\leq 8000\)且\(m\)是质数。
题解
先求出\(m\)的原根\(g\),这样\(1\)~\(m-1\)中的每个数都能被表示成\(g\)的幂。
因为\(g^ig^j=g^{i+j}\),这样就可以把乘积转成和,问题转化为问有多少个长度为\(n\)的数列满足这个数列所有数的和模\(m-1\)为\(y\),\(f_{i+1,j}=\sum f_{i,k}f_{i,j-k}\)。因为模数是NTT模数,原根为\(3\),所以可以用NTT优化。
ln&exp好像也可以做。
时间复杂度:\(O(m\log m\log n)\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
int m;
ll p=1004535809;
int g;
int len=16384;
ll a[100010];
ll b[100010];
ll w1[100010];
ll w2[100010];
int rev[100010];
int c[10010];
ll fp(ll a,ll b)
{
ll s=1;
while(b)
{
if(b&1)
s=s*a%p;
a=a*a%p;
b>>=1;
}
return s;
}
int check(int x)
{
int s=1;
int i;
for(i=1;i<=m-2;i++)
{
s=s*x%m;
if(s==1)
return 0;
}
return 1;
}
void ntt(ll *a,int t)
{
int i,j,k;
ll u,v,w,wn;
for(i=0;i<len;i++)
if(rev[i]<i)
swap(a[i],a[rev[i]]);
for(i=2;i<=len;i<<=1)
{
wn=(t==1?w1[i]:w2[i]);
for(j=0;j<len;j+=i)
{
w=1;
for(k=j;k<j+i/2;k++)
{
u=a[k];
v=a[k+i/2]*w%p;
a[k]=(u+v)%p;
a[k+i/2]=(u-v+p)%p;
w=w*wn%p;
}
}
}
if(t==-1)
{
ll inv=fp(len,p-2);
for(i=0;i<len;i++)
a[i]=a[i]*inv%p;
}
}
void fp(int n)
{
int i;
while(n)
{
ntt(a,1);
if(n&1)
{
ntt(b,1);
for(i=0;i<len;i++)
b[i]=b[i]*a[i]%p;
ntt(b,-1);
for(i=m;i<len;i++)
{
b[i%m]=(b[i%m]+b[i])%p;
b[i]=0;
}
}
for(i=0;i<len;i++)
a[i]=a[i]*a[i]%p;
ntt(a,-1);
for(i=m;i<len;i++)
{
a[i%m]=(a[i%m]+a[i])%p;
a[i]=0;
}
n>>=1;
}
}
int main()
{
int n,x,u;
scanf("%d%d%d%d",&n,&m,&x,&u);
int i;
for(i=1;i<m;i++)
if(check(i))
g=i;
rev[0]=0;
for(i=1;i<len;i++)
rev[i]=(rev[i/2]>>1)|(i&1?len>>1:0);
for(i=2;i<=len;i<<=1)
{
w1[i]=fp(3,(p-1)/i);
w2[i]=fp(w1[i],p-2);
}
int s=1;
for(i=0;i<=m-2;i++)
{
c[s]=i;
s=s*g%m;
}
int v;
memset(a,0,sizeof a);
memset(b,0,sizeof b);
b[0]=1;
for(i=1;i<=u;i++)
{
scanf("%d",&v);
if(!v)
continue;
a[c[v]]++;
}
m--;
fp(n);
printf("%lld\n",b[c[x]]);
return 0;
}
【BZOJ3992】【SDOI2015】序列统计 原根 NTT的更多相关文章
- 【bzoj3992】[SDOI2015]序列统计 原根+NTT
题目描述 求长度为 $n$ 的序列,每个数都是 $|S|$ 中的某一个,所有数的乘积模 $m$ 等于 $x$ 的序列数目模1004535809的值. 输入 一行,四个整数,N.M.x.|S|,其中|S ...
- [BZOJ3992][SDOI2015]序列统计(DP+原根+NTT)
3992: [SDOI2015]序列统计 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 1888 Solved: 898[Submit][Statu ...
- BZOJ3992: [SDOI2015]序列统计(NTT 原根 生成函数)
题意 题目链接 给出大小为\(S\)的集合,从中选出\(N\)个数,满足他们的乘积\(\% M = X\)的方案数 Sol 神仙题Orz 首先不难列出最裸的dp方程,设\(f[i][j]\)表示选了\ ...
- BZOJ.3992.[SDOI2015]序列统计(DP NTT 原根)
题目链接 \(Description\) 给定\(n,m,x\)和集合\(S\).求\(\prod_{i=1}^na_i\equiv x\ (mod\ m)\)的方案数.其中\(a_i\in S\). ...
- 【NTT】bzoj3992: [SDOI2015]序列统计
板子题都差点不会了 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数 列,数列中的每个数都属于集合S.小C用这个生成器生 ...
- 2018.12.31 bzoj3992: [SDOI2015]序列统计(生成函数+ntt+快速幂)
传送门 生成函数简单题. 题意:给出一个集合A={a1,a2,...as}A=\{a_1,a_2,...a_s\}A={a1,a2,...as},所有数都在[0,m−1][0,m-1][0,m− ...
- BZOJ3992: [SDOI2015]序列统计
Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S. 小C用这个生成器生成了许多这样的数列. ...
- BZOJ3992 [SDOI2015]序列统计 【生成函数 + 多项式快速幂】
题目 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数 列,数列中的每个数都属于集合S.小C用这个生成器生成了许多这样的数列.但是小C有一个问题 ...
- 洛谷P3321 [SDOI2015]序列统计(NTT)
传送门 题意:$a_i\in S$,求$\prod_{i=1}^na_i\equiv x\pmod{m}$的方案数 这题目太珂怕了……数学渣渣有点害怕……kelin大佬TQL 设$f[i][j]$表示 ...
随机推荐
- OSGI嵌入tomcat应用服务器(gem-web)——资源下载
Gem-Web官网介绍: 官网地址:https://www.eclipse.org/gemini/web/download/milestones.php 1.1. 官方正式发布版 https://ww ...
- xadmin后台页面的自定制
01-自定制页面 注:最近找到了更好的解决办法:重写钩子函数版 https://www.cnblogs.com/pgxpython/p/10593507.html 需求背景:根据要实现的功能需求,x ...
- python三:循环语句练习--小白博客
# 打印0-10去掉5 count = - : count += : continue print(count) # 打印0-10的偶数 count = : print(count) count+= ...
- (第十三周)Final阶段用户调查报告
项目名:食物链教学工具 组名:奋斗吧兄弟 组长:黄兴 组员:李俞寰.杜桥.栾骄阳.王东涵 用户调查报告 调查时间:2016年12月1日 21:00——2016年12月3日 12:00 项目分享链接 ...
- 安装pandas时出现环境错误
在安装pandas时出现Could not install packages due to an EnvironmentErrorConsider using the `--user` option ...
- Mysql 字符集及排序规则
一.字符集 字符集:就是用来定义字符在数据库中的编码的集合. 常见的字符集:utf8.Unicode.GBK.GB2312(支持中文).ASCCI(不支持中文) 二.字符集排序规则 作者本人用 ...
- latex 图片标题居中
1.有一个全局图片标题居中的方法: \usepackage[justification=centering]{caption} 2.如果排版时有的图标题想左对齐,有的想居中,前一个方法就不好了,这里可 ...
- PAT L3-020 至多删三个字符
https://pintia.cn/problem-sets/994805046380707840/problems/994805046946938880 给定一个全部由小写英文字母组成的字符串,允许 ...
- alibaba druid
FAQ · alibaba/druid Wikihttps://github.com/alibaba/druid/wiki/FAQ sql 连接数不释放 ,Druid异常:wait millis 40 ...
- oracle事务的四个特性(ACID)
事务产生的背景 当在PL/SQL中同时操作多个SQL语句,比如通过DML语句添加.修改或删除数据时,如何确保数据库数据不会因为意外而倒置错误数据是一个非常重要的问题. 以仓库发料系统为例,如果某一张领 ...