欢迎转载,且请注明出处,在文章页面明显位置给出原文连接。

原文链接:http://www.cnblogs.com/zdfjf/p/5175566.html

我们知道有eclipse的Hadoop插件,能够在eclipse上操作hdfs上的文件和新建mapreduce程序,以及以Run On Hadoop方式运行程序。那么我们可不可以直接在eclipse上运行Spark程序,提交到集群上以YARN-Client方式运行,或者以Standalone方式运行呢?

答案是可以的。下面我来介绍一下如何在eclipse上运行Spark的wordcount程序。我用的hadoop 版本为2.6.2,spark版本为1.5.2。

  • 1.Standalone方式运行

  • 1.1 新建一个普通的java工程即可,下面直接上代码,

 /*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/ package com.frank.spark; import scala.Tuple2;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction; import java.util.Arrays;
import java.util.List;
import java.util.regex.Pattern; public final class JavaWordCount {
private static final Pattern SPACE = Pattern.compile(" "); public static void main(String[] args) throws Exception { if (args.length < 1) {
System.err.println("Usage: JavaWordCount <file>");
System.exit(1);
} SparkConf sparkConf = new SparkConf().setAppName("JavaWordCount");
sparkConf.setMaster("spark://192.168.0.1:7077");
JavaSparkContext ctx = new JavaSparkContext(sparkConf);
ctx.addJar("C:\\Users\\Frank\\sparkwordcount.jar");
JavaRDD<String> lines = ctx.textFile(args[0], 1); JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
@Override
public Iterable<String> call(String s) {
return Arrays.asList(SPACE.split(s));
}
}); JavaPairRDD<String, Integer> ones = words.mapToPair(new PairFunction<String, String, Integer>() {
@Override
public Tuple2<String, Integer> call(String s) {
return new Tuple2<String, Integer>(s, 1);
}
}); JavaPairRDD<String, Integer> counts = ones.reduceByKey(new Function2<Integer, Integer, Integer>() {
@Override
public Integer call(Integer i1, Integer i2) {
return i1 + i2;
}
}); List<Tuple2<String, Integer>> output = counts.collect();
for (Tuple2<?,?> tuple : output) {
System.out.println(tuple._1() + ": " + tuple._2());
}
ctx.stop();
}
}

代码直接从spark安装包解压后在examples/src/main/java/org/apache/spark/examples/JavaWordCount.java拷贝出来,唯一不同的地方在增加了44行和46行,44行设置了Master,为hadoop的master 结点的IP,端口号为7077。46行设置了工程打包后放置在windows上的路径。

  • 1.2 加入spark依赖包spark-assembly-1.5.2-hadoop2.6.0.jar,这个包可以从spark 安装包解压 后在lib目录下。

  • 1.3 配置要统计的文件在hdfs上的路径

Run As->Run Configurations

点击Arguments,因为程序中47行要求输入被统计的文件路径,所以在这里配置以下,文件必须放在hdfs上,所以这里的ip也是你的hadoop的master机器的ip.

  • 1.4 接下来就是Run程序了,统计的结果会显示在eclipse的控制台。你也可以通过spark的web页面查看刚才提交的程序。

  • 2. 以YARN-Client方式运行

  • 2.1 先上代码

     /*
    * Licensed to the Apache Software Foundation (ASF) under one or more
    * contributor license agreements. See the NOTICE file distributed with
    * this work for additional information regarding copyright ownership.
    * The ASF licenses this file to You under the Apache License, Version 2.0
    * (the "License"); you may not use this file except in compliance with
    * the License. You may obtain a copy of the License at
    *
    * http://www.apache.org/licenses/LICENSE-2.0
    *
    * Unless required by applicable law or agreed to in writing, software
    * distributed under the License is distributed on an "AS IS" BASIS,
    * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    * See the License for the specific language governing permissions and
    * limitations under the License.
    */ package com.frank.spark; import scala.Tuple2;
    import org.apache.spark.SparkConf;
    import org.apache.spark.api.java.JavaPairRDD;
    import org.apache.spark.api.java.JavaRDD;
    import org.apache.spark.api.java.JavaSparkContext;
    import org.apache.spark.api.java.function.FlatMapFunction;
    import org.apache.spark.api.java.function.Function2;
    import org.apache.spark.api.java.function.PairFunction; import java.util.Arrays;
    import java.util.List;
    import java.util.regex.Pattern; public final class JavaWordCount {
    private static final Pattern SPACE = Pattern.compile(" "); public static void main(String[] args) throws Exception { 38 System.setProperty("HADOOP_USER_NAME", "hadoop"); if (args.length < 1) {
    System.err.println("Usage: JavaWordCount <file>");
    System.exit(1);
    } SparkConf sparkConf = new SparkConf().setAppName("JavaWordCountByFrank01");
    sparkConf.setMaster("yarn-client");
    sparkConf.set("spark.yarn.dist.files", "C:\\software\\workspace\\sparkwordcount\\src\\yarn-site.xml");
    sparkConf.set("spark.yarn.jar", "hdfs://192.168.0.1:9000/user/hadoop/spark-assembly-1.5.2-hadoop2.6.0.jar"); JavaSparkContext ctx = new JavaSparkContext(sparkConf);
    ctx.addJar("C:\\Users\\Frank\\sparkwordcount.jar");
    JavaRDD<String> lines = ctx.textFile(args[0], 1); JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
    @Override
    public Iterable<String> call(String s) {
    return Arrays.asList(SPACE.split(s));
    }
    }); JavaPairRDD<String, Integer> ones = words.mapToPair(new PairFunction<String, String, Integer>() {
    @Override
    public Tuple2<String, Integer> call(String s) {
    return new Tuple2<String, Integer>(s, 1);
    }
    }); JavaPairRDD<String, Integer> counts = ones.reduceByKey(new Function2<Integer, Integer, Integer>() {
    @Override
    public Integer call(Integer i1, Integer i2) {
    return i1 + i2;
    }
    }); List<Tuple2<String, Integer>> output = counts.collect();
    for (Tuple2<?,?> tuple : output) {
    System.out.println(tuple._1() + ": " + tuple._2());
    }
    ctx.stop();
    }
    }
  • 2.2 程序解释

38行,如果你的windows用户名和集群上用户名不一样,这里就应该配置一下。比如我windows用户名为Frank,而装有hadoop的集群username为hadoop,这里我就以38行这样设置。

46行,这里配置以yarn-client方式

48行,以这种方式运行时候,每一次运行都会把spark-assembly-1.5.2-hadoop2.6.0.jar包上传到hdfs下这次生成的application-id文件夹下,会耗费几分钟时间,这里也可以配置spark.yarn.jar,先把spark-assembly-1.5.2-hadoop2.6.0.jar上传到hdfs一个目录下,这样就不用每次从windows上传到hdfs下了。参考https://spark.apache.org/docs/1.5.2/running-on-yarn.html

spark.yarn.jar :The location of the Spark jar file, in case overriding the default location is desired. By default, Spark on YARN will use a Spark jar installed locally, but the Spark jar can also be in a world-readable location on HDFS. This allows YARN to cache it on nodes so that it doesn't need to be distributed each time an application runs. To point to a jar on HDFS, for example, set this configuration to "hdfs:///some/path".

51行,把项目打包后放在windows上的路径。

  • 2.3 程序配置

把3个配置文件放在src下,配置文件从hadoop的linux机器上拷贝下来。

  • 2.4 配置要统计的文件在hdfs上的路径

参考1.3,同样结果显示在eclipse控制台。

在Eclipse上运行Spark(Standalone,Yarn-Client)的更多相关文章

  1. 运行 Spark on YARN

    运行 Spark on YARN Spark 0.6.0 以上的版本添加了在yarn上执行spark application的功能支持,并在之后的版本中持续的 改进.关于本文的内容是翻译官网的内容,大 ...

  2. Spark学习之在集群上运行Spark

    一.简介 Spark 的一大好处就是可以通过增加机器数量并使用集群模式运行,来扩展程序的计算能力.好在编写用于在集群上并行执行的 Spark 应用所使用的 API 跟本地单机模式下的完全一样.也就是说 ...

  3. 在集群上运行Spark

    Spark 可以在各种各样的集群管理器(Hadoop YARN.Apache Mesos,还有Spark 自带的独立集群管理器)上运行,所以Spark 应用既能够适应专用集群,又能用于共享的云计算环境 ...

  4. Spark学习之在集群上运行Spark(6)

    Spark学习之在集群上运行Spark(6) 1. Spark的一个优点在于可以通过增加机器数量并使用集群模式运行,来扩展程序的计算能力. 2. Spark既能适用于专用集群,也可以适用于共享的云计算 ...

  5. cdh 上安装spark on yarn

    在cdh 上安装spark on yarn 还是比较简单的,不需要独立安装什么模块或者组件. 安装服务 选择on yarn 模式:上面 Spark 在spark 服务中添加 在yarn 服务中添加 g ...

  6. 《Spark 官方文档》在Mesos上运行Spark

    本文转自:http://ifeve.com/spark-mesos-spark/ 在Mesos上运行Spark Spark可以在由Apache Mesos 管理的硬件集群中运行. 在Mesos集群中使 ...

  7. linux下在eclipse上运行hadoop自带例子wordcount

    启动eclipse:打开windows->open perspective->other->map/reduce 可以看到map/reduce开发视图.设置Hadoop locati ...

  8. Windows下IntelliJ IDEA中运行Spark Standalone

    ZHUAN http://www.cnblogs.com/one--way/archive/2016/08/29/5818989.html http://www.cnblogs.com/one--wa ...

  9. mac上eclipse上运行word count

    1.打开eclipse之后,建立wordcount项目 package wordcount; import java.io.IOException; import java.util.StringTo ...

随机推荐

  1. Day02:数据类型、字符编码、文件处理

    一.基础数据类型与其内置方法 1. int基本使用:int(3.1) 用途:记录年龄,职级等 只能将包含纯数字的字符串类型转换成整形 特点:1.存一个值. 2.不可变 2.float基本使用 floa ...

  2. css animation 简写和参数

  3. SublimeLinter js和css的语法检查

    JavaScript 语法检查 SublimeLinter-jshint 是基于 nodeJS 下的 jshint 的插件,实际上 SublimeLinter-jshint 调用了 nodeJS 中 ...

  4. In-App Purchase Programming Guide----(一) ---- About In-App Purchase

    About In-App Purchase In-App Purchase allows you to embed a store inside your app using the Store Ki ...

  5. TypeScript完全解读(26课时)_15.模块和命名空间

    新建文件夹ts-modules 并新建index.ts 在根index.ts内引入 新建a.ts文件 ts在1.5之前有两个概念一个是内部模块,一个是外部模块,因为在1.5之前es6的标准还没有提出 ...

  6. HTTP客户端代码片段

    代码片段: public HttpURLConnection connection = null; 设置connection属性 URL url = new URL(urlPath); connect ...

  7. E20190404-hm

    prepend vt. 预先考虑,预先计划,预谋;

  8. hdoj5289【RMQ+二分】【未完待续】

    思路: 对当前值查找最近满足位置: 利用RMQ求出区间最大最小值,再枚举右端点,二分区间找到满足要求的最大区间累加

  9. [Xcode 实际操作]七、文件与数据-(22)使用OCR光学字符识别技术识别银行卡号码

    目录:[Swift]Xcode实际操作 本文将演示如何使用光学字符识别技术,识别信用卡上的卡号. OCR技术是光学字符识别的缩写(Optical Character Recognition), 是通过 ...

  10. Tomcat - 怎么控制某个类或者包下的日志打印级别

    问题与分析 Tomcat是使用自己的日志实现tomcat-juli.jar来打印日志信息的,日志会被打印到catalina.out里,除去你在项目里自己使用的日志框架外,由System.out,Sys ...