CodeForces 618D Hamiltonian Spanning Tree
题意:要把所有的节点都访问一次,并且不能重复访问,有两种方式访问,一种是根据树上的路径
走和当前节点连接的下一个节点cost x, 或者可以不走树上边,直接跳到不与当前节点连接的节点,cost y
分析:
别被树吓着!
一定会走n-1条路,那么就是有一些走树上的边,有一些不走。
如果树上的路径cost更大(x >= y),那么尽可能的不走树上的路径,那么根据尝试可以找到规律
如果有一个节点是所有节点的父节点,也就是说这个节点的度为n-1,那么只会走一个x其他都是y
如果没有这个节点,一定可以全部走y
另一种情况如果(x < y),那么也就是说要尽可能的多走树上的边,我们知道一个节点只能访问一次,也就是说
一个节点最多只能连两条边出去,然后dfs搜索,找到最多可以走多少条,每个节点的度数如果不被剪完就可以继续连,
剩下的只能走y。
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <queue>
#include <vector>
#include <algorithm>
#include <stack>
#include <set>
#include <map>
#include <math.h>
#define pb push_back
#define CLR(a) memset(a, 0, sizeof(a));
#define MEM(a, b) memset(a, b, sizeof(a));
#define fi first
#define se second using namespace std; typedef long long ll; const int MAXN = ;
const int MAXV = ;
const int MAXE = ;
const int INF = 0x3f3f3f3f;
ll x, y, n;
struct Edge
{
int to, next;
Edge () {}
Edge(int to, int next) : to(to), next(next) {}
}edge[MAXN << ];
int num;
int head[MAXN];
void Add(int from, int to)
{
edge[num] = Edge(to, head[from]);
head[from] = num++;
}
int deg[MAXN];
ll ans = ;
ll len = ;
int cnt = ;
bool dfs(int crt, int fa)
{
int rem = ;
for (int t = head[crt]; t != -; t = edge[t].next)
{
Edge e = edge[t];
int v = e.to;
if (v == fa) continue;
if (dfs(v, crt) && rem > )
{
len++; rem--;
}
}
return rem > ;
} int main()
{
//freopen("in.txt", "r", stdin);
while (~scanf("%lld%lld%lld", &n, &x, &y))
{
MEM(head, -);
MEM(edge, -);
CLR(deg);
num = ;
len = ;
for (int i = ; i < n-; i++)
{
int u, v;
scanf("%d%d", &u, &v);
Add(u, v);
Add(v, u);
deg[u]++;
deg[v]++;
}
bool done = false;
if (x >= y)
{
for (int i = ; i <= n; i++)
{
if (deg[i] == n-)
{
ans = y*(n-)+x;
printf("%lld\n", ans);
done = true;
break;
}
}
if (done) continue;
ans = (n-)*y;
printf("%lld\n", ans);
continue;
}
dfs(, ); ans = len*x + (n--len)*y;
printf("%lld\n", ans);
}
return ;
}
CodeForces 618D Hamiltonian Spanning Tree的更多相关文章
- Codeforces 618D Hamiltonian Spanning Tree(树的最小路径覆盖)
题意:给出一张完全图,所有的边的边权都是 y,现在给出图的一个生成树,将生成树上的边的边权改为 x,求一条距离最短的哈密顿路径. 先考虑x>=y的情况,那么应该尽量不走生成树上的边,如果生成树上 ...
- 【19.27%】【codeforces 618D】Hamiltonian Spanning Tree
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
- [Educational Round 3][Codeforces 609E. Minimum spanning tree for each edge]
这题本来是想放在educational round 3的题解里的,但觉得很有意思就单独拿出来写了 题目链接:609E - Minimum spanning tree for each edge 题目大 ...
- codeforces 609E Minimum spanning tree for each edge
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
- codeforces 609E. Minimum spanning tree for each edge 树链剖分
题目链接 给一个n个节点m条边的树, 每条边有权值, 输出m个数, 每个数代表包含这条边的最小生成树的值. 先将最小生成树求出来, 把树边都标记. 然后对标记的边的两个端点, 我们add(u, v), ...
- Codeforces 1133 F2. Spanning Tree with One Fixed Degree 并查集+生成树
好久没更新博客了,一直懒得动,这次更新一下. 题意大概是:给出一个图,求它的一个一号节点的度数恰好为D的生成树的方案. 一开始随便水了个乱搞贪心,不出意外并没有过. 仔细思考之后,对于这个问题我们可以 ...
- Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值
E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...
- Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge 树上倍增
E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST
E. Minimum spanning tree for each edge Connected undirected weighted graph without self-loops and ...
随机推荐
- Dojo的on函数(以前的dojo.connect)
同jQuery的on函数: require(["esri/map", "dojo/on"], function(Map, on) { // ... on(my ...
- nodejs个人博客系统
说明:本人目前还是一名C#程程序,在公司干过一年的前端(ps切图,html+css,js),二年的后台C#(b/s,c/s)的开发.因为想转型所以学习了nodejs这门感觉非常棒的一门语言.于是写了一 ...
- Java中List集合排序的方法 比较器的使用 根据学生对象数学 语文 英语成绩总和进行sort排序
package com.swift; import java.util.ArrayList; import java.util.Collections; import java.util.Compar ...
- lua调用java过程
在cocos2dx框架中,有继承好的luaj文件来方便我们去使用lua调用java底层代码,注意:luaj只能使用在安卓平台下,如果在平台下使用,会出错, 所以使用前需要加平台判断,方法 如下: lo ...
- 【dp】石子归并
玄学NPC 题目描述 有一堆石头质量分别为W1,W2,…,Wn.(Wi≤10000),将石头合并为两堆,使两堆质量的差最小. 输入 输入第一行只有一个整数n(1≤n≤50),表示有n堆石子.接下去的n ...
- JS - 生成UUID
function uuid(len, radix) { var chars = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvw ...
- 【android】6大布局
线性布局 相对布局 绝对布局 网格布局 表格布局 帧布局
- 五一4天就背这些Python面试题了,Python面试题No12
第1题: Python 中的 os 模块常见方法? os 属于 python内置模块,所以细节在官网有详细的说明,本道面试题考察的是基础能力了,所以把你知道的都告诉面试官吧 官网地址 https:// ...
- 【报错】invalid or unexpected token
结果发现是把英文的,写成了中文字符,系统没法识别.
- Python之多线程与多进程(一)
多线程 多线程是程序在同样的上下文中同时运行多条线程的能力.这些线程共享同一个进程的资源,可以在并发模式(单核处理器)或并行模式(多核处理器)下执行多个任务 多线程有以下几个优点: 持续响应:在单线程 ...