Error Curves

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1198    Accepted Submission(s): 460

Problem Description
Josephina is a clever girl and addicted to Machine Learning recently. She
pays much attention to a method called Linear Discriminant Analysis, which
has many interesting properties.
In order to test the algorithm's efficiency, she collects many datasets.
What's more, each data is divided into two parts: training data and test
data. She gets the parameters of the model on training data and test the
model on test data. To her surprise, she finds each dataset's test error
curve is just a parabolic curve. A parabolic curve corresponds to a
quadratic function. In mathematics, a quadratic function is a polynomial
function of the form f(x) = ax2 + bx + c. The
quadratic will degrade to linear function if a = 0.

It's very easy to calculate the minimal error if there is only one test
error curve. However, there are several datasets, which means Josephina
will obtain many parabolic curves. Josephina wants to get the tuned
parameters that make the best performance on
all datasets. So she should take all error curves into account, i.e.,
she has to deal with many quadric functions and make a new error
definition to represent the total error. Now, she focuses on the
following new function's minimum which related to multiple
quadric functions. The new function F(x) is defined as follows: F(x) =
max(Si(x)), i = 1...n. The domain of x is [0, 1000]. Si(x) is a quadric
function. Josephina wonders the minimum of F(x). Unfortunately, it's too
hard for her to solve this problem. As a
super programmer, can you help her?

 
Input
The input contains multiple test cases. The first line is the number of
cases T (T < 100). Each case begins with a number n (n ≤ 10000).
Following n lines, each line contains three integers a (0 ≤ a ≤ 100), b
(|b| ≤ 5000), c (|c| ≤ 5000), which mean the corresponding
coefficients of a quadratic function.
 
Output
For each test case, output the answer in a line. Round to 4 digits after the decimal point.
 
Sample Input
2
1
2 0 0
2
2 0 0
2 -4 2
 
Sample Output
0.0000
0.5000
 
Author
LIN, Yue
 
Source
 
Recommend
zhouzeyong
 
 
该题欲求众多二次函数中当x为0-1000之间的每个值的时候函数最大值,
将所有最大值求出输出最小的一个便可以,
解决方法:三分,
中间更新区间的时候调换一下位置即可,因为本体求得是最小值
 
ps:esp取1e-8的时候过不去,为WA,当开到1e-9的时候就过去了,原因可能是本题答案要求输出4位小数点,而在计算二次函数的时候计算了x*x会生成8位小数,所有保留9位小数才能保证精度不受损失
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
int n;
struct node{
double a,b,c;
}que[];
double esp=1e-;
double ff(double x){
double tmax=que[].a*x*x+que[].b*x+que[].c;
for(int i=;i<n;i++){
tmax=max(tmax,que[i].a*x*x+que[i].b*x+que[i].c);
}
return tmax;
} void calculate(){
double l=,r=1000.0;
double ans1,ans2;
while(l+esp<r){
double mid=(l+r)/2.0;
double midmid=(mid+r)/2.0;
ans1=ff(mid);
ans2=ff(midmid);
if(ans1<ans2){
r=midmid;
}
else
l=mid; }
printf("%.4lf\n",ans1);
} int main(){
int t;
scanf("%d",&t);
while(t--){
memset(que,,sizeof(que));
scanf("%d",&n);
for(int i=;i<n;i++){
scanf("%lf%lf%lf",&que[i].a,&que[i].b,&que[i].c); }
calculate();
}
return ;
}

hdu 3714 Error Curves(三分)的更多相关文章

  1. nyoj 1029/hdu 3714 Error Curves 三分

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3714 懂了三分思想和F(x)函数的单调性质,这题也就是水题了 #include "stdio ...

  2. hdu 3714 Error Curves(三分)

    http://acm.hdu.edu.cn/showproblem.php?pid=3714 [题意]: 题目意思看了很久很久,简单地说就是给你n个二次函数,定义域为[0,1000], 求x在定义域中 ...

  3. LA 5009 (HDU 3714) Error Curves (三分)

    Error Curves Time Limit:3000MS    Memory Limit:0KB    64bit IO Format:%lld & %llu SubmitStatusPr ...

  4. HDU 3714 Error Curves

    Error Curves 思路:这个题的思路和上一个题的思路一样,但是这个题目卡精度,要在计算时,卡到1e-9. #include<cstdio> #include<cstring& ...

  5. 三分 HDOJ 3714 Error Curves

    题目传送门 /* 三分:凹(凸)函数求极值 */ #include <cstdio> #include <algorithm> #include <cstring> ...

  6. UVA - 1476 Error Curves 三分

                                           Error Curves Josephina is a clever girl and addicted to Machi ...

  7. UVALive 5009 Error Curves 三分

    //#pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio> #include& ...

  8. Error Curves HDU - 3714

    Josephina is a clever girl and addicted to Machine Learning recently. She pays much attention to a m ...

  9. HDU 3714/UVA1476 Error Curves

    Error Curves Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tota ...

随机推荐

  1. OpenCV转为灰度图像 & 访问像素方法

    cvtColor(src, dst, CV_RGB2GRAY); 可转为灰度图像. 彩色图像像素访问:image.at<Vec3b>(i, j)[0],image.at<Vec3b& ...

  2. Oracle开发›如何取出每个分组的第一条记

    <ignore_js_op> 截屏图片 (2).jpg (43.34 KB, 下载次数: 21) 下载附件 2012-11-7 12:36 上传   如何取出每个分组的第一条记录(黄色背景 ...

  3. Flutter /bin/sh: /packages/flutter_tools/bin/xcode_backend.sh: No such file or directory

    自己写项目中遇到的一个问题, 可以出来是路径找不到,应该是FLUTTER_ROOT这个全局变量没有取到值的原因 1.检查xcode_backend.sh 是否真的存在 2.网上说的:Target -& ...

  4. Angular6中[ngClass]、[ngStyle]的基本使用

    1.ngStyle 基本用法 <div [ngStyle]="{'background-color':'green'}"></<div> 判断添加 & ...

  5. GCH文件

    GCH文件是将H文件当作CPP进行编译之后出现的结果, 在头文件进行编译后就会在文件夹中看到一个 “文件名.h.gch” 的文件. 那么在再次对gch文件进行编译的时候就会将gch当作cpp一样对待. ...

  6. 【前端_js】Chrome禁止缓存的方法

    在前端开发中,浏览器缓存使得我们改了代码后页面不变,得经常手动清理缓存. 1.按如下操作即可禁用浏览器缓存, 这种方法基本能够做到完全禁止缓存,然而缺点是必须要将开发模式一直打开,占用屏幕空间.而且, ...

  7. python之斐波纳契数列

    斐波纳契数列 斐波那契数列指的是这样一个数列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,676 ...

  8. PHP判断时关于null,0,true,flase的值

    <?php// $wh = 0; //等于整数0,等于字符串'0',等于空字符串,等于空格字符串, 等于空(null),等于字符串('null')// $wh = '0'; //=>等于整 ...

  9. ubuntu crontab设置定时任务

    ubuntu 设置定时任务   crontab -l  #查看详情crontab -e #设置定时任务 * * * * * command 分 时 日 月 周 命令 第1列表示分钟1-59 每分钟用* ...

  10. kubernetes中使用ServiceAccount创建kubectl config 文件

    在kubernetes 为不同的项目创建了不同的SerivceAccount,那么如何通过ServiceAccount创建 kubectl config文件呢?使用下面脚本即可 # your serv ...