hdu 3714 Error Curves(三分)
Error Curves
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1198 Accepted Submission(s): 460
pays much attention to a method called Linear Discriminant Analysis, which
has many interesting properties.
In order to test the algorithm's efficiency, she collects many datasets.
What's more, each data is divided into two parts: training data and test
data. She gets the parameters of the model on training data and test the
model on test data. To her surprise, she finds each dataset's test error
curve is just a parabolic curve. A parabolic curve corresponds to a
quadratic function. In mathematics, a quadratic function is a polynomial
function of the form f(x) = ax2 + bx + c. The
quadratic will degrade to linear function if a = 0.

It's very easy to calculate the minimal error if there is only one test
error curve. However, there are several datasets, which means Josephina
will obtain many parabolic curves. Josephina wants to get the tuned
parameters that make the best performance on
all datasets. So she should take all error curves into account, i.e.,
she has to deal with many quadric functions and make a new error
definition to represent the total error. Now, she focuses on the
following new function's minimum which related to multiple
quadric functions. The new function F(x) is defined as follows: F(x) =
max(Si(x)), i = 1...n. The domain of x is [0, 1000]. Si(x) is a quadric
function. Josephina wonders the minimum of F(x). Unfortunately, it's too
hard for her to solve this problem. As a
super programmer, can you help her?
cases T (T < 100). Each case begins with a number n (n ≤ 10000).
Following n lines, each line contains three integers a (0 ≤ a ≤ 100), b
(|b| ≤ 5000), c (|c| ≤ 5000), which mean the corresponding
coefficients of a quadratic function.
1
2 0 0
2
2 0 0
2 -4 2
0.5000
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
int n;
struct node{
double a,b,c;
}que[];
double esp=1e-;
double ff(double x){
double tmax=que[].a*x*x+que[].b*x+que[].c;
for(int i=;i<n;i++){
tmax=max(tmax,que[i].a*x*x+que[i].b*x+que[i].c);
}
return tmax;
} void calculate(){
double l=,r=1000.0;
double ans1,ans2;
while(l+esp<r){
double mid=(l+r)/2.0;
double midmid=(mid+r)/2.0;
ans1=ff(mid);
ans2=ff(midmid);
if(ans1<ans2){
r=midmid;
}
else
l=mid; }
printf("%.4lf\n",ans1);
} int main(){
int t;
scanf("%d",&t);
while(t--){
memset(que,,sizeof(que));
scanf("%d",&n);
for(int i=;i<n;i++){
scanf("%lf%lf%lf",&que[i].a,&que[i].b,&que[i].c); }
calculate();
}
return ;
}
hdu 3714 Error Curves(三分)的更多相关文章
- nyoj 1029/hdu 3714 Error Curves 三分
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3714 懂了三分思想和F(x)函数的单调性质,这题也就是水题了 #include "stdio ...
- hdu 3714 Error Curves(三分)
http://acm.hdu.edu.cn/showproblem.php?pid=3714 [题意]: 题目意思看了很久很久,简单地说就是给你n个二次函数,定义域为[0,1000], 求x在定义域中 ...
- LA 5009 (HDU 3714) Error Curves (三分)
Error Curves Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu SubmitStatusPr ...
- HDU 3714 Error Curves
Error Curves 思路:这个题的思路和上一个题的思路一样,但是这个题目卡精度,要在计算时,卡到1e-9. #include<cstdio> #include<cstring& ...
- 三分 HDOJ 3714 Error Curves
题目传送门 /* 三分:凹(凸)函数求极值 */ #include <cstdio> #include <algorithm> #include <cstring> ...
- UVA - 1476 Error Curves 三分
Error Curves Josephina is a clever girl and addicted to Machi ...
- UVALive 5009 Error Curves 三分
//#pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio> #include& ...
- Error Curves HDU - 3714
Josephina is a clever girl and addicted to Machine Learning recently. She pays much attention to a m ...
- HDU 3714/UVA1476 Error Curves
Error Curves Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Tota ...
随机推荐
- MVC文件下载和webform也能使用的下载方法
public ActionResult Index() { DownloadMethod("text/plain", "C:/Users/sunny/Pictures/S ...
- Android(java)学习笔记85:使用SQLite的基本流程
- jstree前端设置默认选中项
$("#jstree").on("loaded.jstree", function (event, data) { var currDeptId = crm.g ...
- android studio 安装以及遇到的一些问题
1 安装 jkd ,版本一般是最新的,下怎么样的看一下自己电脑符合那种要求,可以去官网下 https://www.oracle.com/technetwork/java/javase/download ...
- 51nod——2487小b和环
dp[ i ][ 0 ] : 第i个位置不取 dp[ i ][ 1 ] : 第i个位置取 这样就可以得到状态转移方程: dp[i][0]=max(max(dp[i][0],dp[i-1][1]),dp ...
- Java,集合按自定义规则排序
import java.util.ArrayList; import java.util.Collections; import java.util.Comparator; import java.u ...
- Linux监控一之Nagios的安装与配置
一.Nagios简介 Nagios是一款开源的电脑系统和网络监视工具,能有效监控Windows.Linux和Unix的主机状态,交换机路由器等网络设置,打印机等.在系统或服务状态异常时发出邮件或短信报 ...
- 最新手机号正则表达式php包括166等号段
if(!preg_match("/^((13[0-9])|(14[5,7])|(15[0-3,5-9])|(17[0,3,5-8])|(18[0-9])|166|198|199|(147)) ...
- mysql双机热备实现
说明 机器A:(172.16.1.251),机器B:(172.16.1.252) 两台机器都创建数据库web:create database hello default charset utf8; 实 ...
- Codeforces Round #462 (Div. 2) D. A Determined Cleanup
D. A Determined Cleanup time limit per test1 second memory limit per test256 megabytes Problem Descr ...