The merchant

Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 4800   Accepted: 1666

Description

There are N cities in a country, and there is one and only one simple path between each pair of cities. A merchant has chosen some paths and wants to earn as much money as possible in each path. When he move along a path, he can choose one city to buy some goods and sell them in a city after it. The goods in all cities are the same but the prices are different. Now your task is to calculate the maximum possible profit on each path.

Input

The first line contains N, the number of cities. Each of the next N lines contains wi the goods' price in each city. Each of the next N-1 lines contains labels of two cities, describing a road between the two cities. The next line contains Q, the number of paths. Each of the next Q lines contains labels of two cities, describing a path. The cities are numbered from 1 to N.

1 ≤ NwiQ ≤ 50000

Output

The output contains Q lines, each contains the maximum profit of the corresponding path. If no positive profit can be earned, output 0 instead.

Sample Input

4
1
5
3
2
1 3
3 2
3 4
9
1 2
1 3
1 4
2 3
2 1
2 4
3 1
3 2
3 4

Sample Output

4
2
2
0
0
0
0
2
0

Source

大致翻译:有n个城市,n-1条边,现在一个商人要去买卖东西,每个城市都有固定的价格,现在有q条路径,问你每条路径上买卖能赚到的最多的钱分别是多少?一条路径只能顺着走,不能反过来.
分析:这道题巨坑爹整整调了一个下午TAT.回到正题,其实题目给我们n个城市,n-1条边就相当于给了我们一棵树,既然是告诉了树上两个点,我们肯定是要把LCA求出来才能知道两个点之间的路径的。求LCA可以利用倍增,那么接下来就要维护一些信息才能完成此题。
     假设有一个询问是(u,v),u,v的LCA为t,那么我们可能在u到t的这段路径买入,在t到v的这段路径卖出,也可能就在u到t的这段路径买入卖出,还可能在t到v的这段路径买入卖出.考虑第一种情况,我们需要记录u到t的最小值和t到v的最大值,考虑第二种情况和第三种情况,我们只需要分别维护这两段路径上的最大收益即可,但是注意从t到v的这段路径,我们倍增总不能从t跳到v吧,我们让u和v往上跳,那么考虑反过程,我们让从v到t的这段路径在价格最高点买入,在价格最低点卖出,统计答案的时候取相反数即可。
     上面说明了我们要维护哪些信息,下面来说明该怎么维护这些信息:
     设minn[i][j]为i到i的第2^j个祖先的最小值,maxx[i][j]为为i到i的第2^j个祖先的最大值,lmax[i][j]为i到i的第2^j个祖先的最大收益,rmin[i][j]为i到i的第2^j个祖先的最小收益(刚刚考虑的特殊情况),fa[i][j]为i的第2^j个祖先。
     可以先利用dfs求出fa[i][0]和每个节点的深度d[i],然后发现:我们可以在维护fa[i][j]的同时维护其他信息:minn[i][j] = min(minn[i][j-1],minn[fa[i][j-1]][j-1]),maxx类同,那么lmax就是最大卖出价-最小买入价,或者是它的子区间中的最大值,即lmax[i][j] = max(max(lmax[i][j - 1], lmax[fa[i][j - 1]][j - 1]), maxx[fa[i][j-1]][j - 1] - minn[i][j - 1]),rmin类同,顺序不能反!
     然后我们需要在倍增的时候处理这些信息。以求从u到t的这段路径为例,维护最小值,最大收益,怎么维护最大收益呢?利用之前的lmax数组和maxx数组和当前维护的最小值,然后维护从t到u的信息。最后的答案可能有3种:从u到t的最大收益,从t到v的最小收益的相反数,从t到v的最大值减去从u到t的最小值,取这3种可能的答案的最大值即可。
还有一些小细节,可以在代码中查看:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; int n,a[],head[],to[],nextt[],tot,q,d[];
int fa[][], minn[][], maxx[][], lmax[][], rmin[][]; void add(int x, int y)
{
to[tot] = y;
nextt[tot] = head[x];
head[x] = tot++;
} void dfs(int u, int from,int dist)
{
d[u] = dist;
fa[u][] = from;
for (int i = head[u]; i != -; i = nextt[i])
{
int v = to[i];
if (from != v)
dfs(v, u,dist + );
}
} void init()
{
dfs(, , );
minn[][] = maxx[][] = a[];
lmax[][] = - << ;
rmin[][] = << ;
for (int i = ; i <= n; i++)
{
minn[i][] = min(a[i], a[fa[i][]]);
maxx[i][] = max(a[i], a[fa[i][]]);
lmax[i][] = max(a[fa[i][]] - a[i], );
rmin[i][] = min(a[fa[i][]] - a[i], );
}
for (int j = ; ( << j) < n; j++)
for (int i = ; i <= n; i++)
{
fa[i][j] = fa[fa[i][j - ]][j - ];
maxx[i][j] = max(maxx[i][j - ], maxx[fa[i][j - ]][j - ]);
minn[i][j] = min(minn[i][j - ], minn[fa[i][j - ]][j - ]);
lmax[i][j] = max(max(lmax[i][j - ], lmax[fa[i][j - ]][j - ]), maxx[fa[i][j-]][j - ] - minn[i][j - ]);
rmin[i][j] = min(min(rmin[i][j - ], rmin[fa[i][j - ]][j - ]), minn[fa[i][j - ]][j - ] - maxx[i][j - ]);
}
} int LCA(int x, int y)
{
int maxxx = , miny = , minx = a[x], maxy = a[y];
for (int i = ; i >= && d[x] != d[y]; i--)
{
if (abs(d[x] - d[y]) >= << i)
{
if (d[y] < d[x])
{
maxxx = max(max(maxxx, lmax[x][i]), maxx[x][i] - minx);
minx = min(minx, minn[x][i]);
x = fa[x][i];
}
else
{
miny = min(min(miny, rmin[y][i]), minn[y][i] - maxy);
maxy = max(maxy, maxx[y][i]);
y = fa[y][i];
}
}
}
if (x == y)
return max(max(maxxx, -miny), maxy - minx);
for (int i = ; i >= ;i--)
if (fa[x][i] != fa[y][i] && fa[x][i] && fa[y][i])
{
maxxx = max(max(maxxx, lmax[x][i]), maxx[x][i] - minx);
minx = min(minx, minn[x][i]);
x = fa[x][i]; miny = min(min(miny, rmin[y][i]), minn[y][i] - maxy);
maxy = max(maxy, maxx[y][i]);
y = fa[y][i];
}
maxxx = max(max(maxxx, lmax[x][]), maxx[x][] - minx);
minx = min(minx, minn[x][]);
miny = min(min(miny, rmin[y][]), minn[y][] - maxy);
maxy = max(maxy, maxx[y][]);
return max(max(maxxx, -miny), maxy - minx); } int main()
{
memset(head, -, sizeof(head));
scanf("%d", &n);
for (int i = ; i <= n; i++)
scanf("%d", &a[i]);
for (int i = ; i <= n - ; i++)
{
int u, v;
scanf("%d%d", &u, &v);
add(u, v);
add(v, u);
}
init();
scanf("%d", &q);
while (q--)
{
int x, y;
scanf("%d%d", &x, &y);
printf("%d\n", LCA(x, y));
} return ;
}

poj3728The merchant的更多相关文章

  1. poj3728The merchant 【倍增】【LCA】

    There are N cities in a country, and there is one and only one simple path between each pair of citi ...

  2. POJ3728The merchant (倍增)(LCA)(DP)(经典)(||并查集压缩路径?)

    There are N cities in a country, and there is one and only one simple path between each pair of citi ...

  3. poj3728The merchant树剖+线段树

    如果直接在一条直线上,那么就建线段树 考虑每一个区间维护最小值和最大值和答案,就符合了合并的条件,一个log轻松做 那么在树上只要套一个树剖就搞定了,多一个log也不是问题 注意考虑在树上的话每一条链 ...

  4. [最近公共祖先] POJ 3728 The merchant

    The merchant Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 4556   Accepted: 1576 Desc ...

  5. POJ 3278 The merchant

    传送门 Time Limit: 3000MS Memory Limit: 65536K Description There are N cities in a country, and there i ...

  6. poj 3728 The merchant(LCA)

    Description There are N cities in a country, and there is one and only one simple path between each ...

  7. ThoughtWorks Merchant's Guide To The Galaxy

    ThoughtWorks笔试题之Merchant's Guide To The Galaxy解析 一.背景 在某网站上看到ThoughtWorks在武汉招人,待遇在本地还算不错,就投递了简历.第二天H ...

  8. [POJ 3728]The merchant

    Description There are N cities in a country, and there is one and only one simple path between each ...

  9. opencart3图片Google Merchant Center验证通过不了的解决方法

    最近在做一个opencart项目,有对接Google Merchant Center,但是一直提示产品图片验证无法通过,ytkah看了一下图片路径,/image/cache/catalog/demo/ ...

随机推荐

  1. [手势识别] CNN + OpenCV 手势识别记录

    这几天没事,想着再学点一些视觉识别方向的东西,因为之前做了验证码识别,有了机器学习的信心,因此这次打算做个手势识别,参考了很多网上的图像处理方式,中间也遇到了很多问题,最终算是做出来了吧. 1.训练集 ...

  2. KMP算法入门讲解

    字符串匹配问题.假设文本是一个长度为$n$的字符串$T$,模板是一个长度为$m$的字符串$P$,且$m\leq n$.需要求出模板在文本中的所有匹配点$i$,即满足$T[i]=P[0],T[I+1]= ...

  3. 个人对spring的IOC+DI的封装

    暂时支持8种基本数据类型,String类型,引用类型,List的注入. 核心代码 package day01; import java.lang.reflect.Field;import java.l ...

  4. message() 信息提示

    //样式部分 .message { position: fixed;top: -100px;width: 400px;left: 50%;margin-left: -200px;z-index: 10 ...

  5. 【wqs二分 决策单调性】HHHOJ#261. Brew

    第一道决策单调性…… 题目描述 HHHOJ#261. Brew 题目分析 挺好的……模板题? 寄存了先. #include<bits/stdc++.h> typedef long long ...

  6. JDBC-防止SQL注入问题

      String sql = "select * from user where name = '" + name + "' and password = '" ...

  7. spring boot自动配置实现

    自从用了spring boot,都忘记spring mvc中的xml配置是个什么东西了,再也回不去.为啥spring boot这么好用呢, 约定大于配置的设计初衷, 让我们只知道维护好applicat ...

  8. python入门:数字型和字符串换行要同类型 注意连接符

    #!/usr/bin/env python # -*- coding: utf-8 -*- #数字型和字符串换行要同类型 注意连接符 a = 1 b = 2 print(str(a) + " ...

  9. settings.py常规配置项

    settings.py常见配置项 1. 配置Django_Admin依照中文界面显示 LANGUAGE_CODE = 'zh-hans' 2. 数据库配置(默认使用sqlite3) 使用MySQL的配 ...

  10. Python3学习了解日记

    # 单行注释 ''' 多行注释 ''' """ 这个也是多行注释 """ ''' 声明变量 Python 中的变量不需要声明.每个变量在使用 ...