Optimal Marks(optimal)
Optimal Marks(optimal)
题目描述
定义无向图边的值为这条边连接的两个点的点权异或值。
定义无向图的值为无向图中所有边的值的和。
给定nn个点mm条边构成的图。其中有些点的权值是给定的,另外一些由你来定。点权必须为非负数。现在你需要使无向图的值最小,且在保证图的权值最小的情况下点的权值的和最小。
输入
第一行两个数nn和mm,表示图的点数和边数。
接下来nn行,每行一个数,表示每个点的权值。如果是负数,表示该点点权由你定,点权绝对值不超过109109。
接下来mm行,每行两个数aa和bb,表示aa和bb之间有无向边相连。(保证无重边和自环,但不保证是连通图)。
输出
第一行,一个数,表示无向图的最小值。
第二行,一个数,表示此时无向图中点权的和的值。
样例输入
3 2
2
-1
0
1 2
2 3
样例输出
2
2
提示
对于所有数据:
n≤500n≤500 m≤2000m≤2000
样例解释:
将22号点权值定位00即可。
solution
考虑拆位,这样权值就变成了0/1
建图
若w[i]=1
lj(S,i,inf);
若w[i]=0
lj(i,T,inf);
对于原图中的边(u,v)
lj(u,v,1);lj(v,u,1);
然后就是最小割的问题了
割在S表示选1,T表示选0
这样就解决了第一问。
对于第二问,我们要求T集尽量大
由于流量只有0和1,我们可以从S开始遍历,发现0就返回,找出最小的S集
e[i].v打成k调了一下午。。。
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#define maxn 5005
#define inf 1e9
using namespace std;
int n,m,w[maxn],a1[20002],b1[20002],tot=1,head[maxn],S,T;
int d[maxn],flag[maxn],cur[maxn],ans,fl[maxn];
long long anse,ansv;
struct node{
int v,nex,cap;
}e[100005];
void Q(){
tot=1;
memset(head,0,sizeof head);
}
void lj(int t1,int t2,int t3){
tot++;e[tot].v=t2,e[tot].cap=t3;e[tot].nex=head[t1];head[t1]=tot;
}
bool BFS(){
for(int i=1;i<=T;i++)d[i]=inf,flag[i]=0;
queue<int>q;q.push(S);d[S]=0;
while(!q.empty()){
int x=q.front();q.pop();cur[x]=head[x];
for(int i=head[x];i;i=e[i].nex){
if(d[e[i].v]>d[x]+1&&e[i].cap){
d[e[i].v]=d[x]+1;
if(!flag[e[i].v]){
flag[e[i].v]=1;q.push(e[i].v);
}
}
}
flag[x]=0;
}
return d[T]!=inf;
}
int lian(int k,int a){
//cout<<k<<' '<<a<<endl;
if(k==T||!a)return a;
int f,flow=0;
for(int& i=cur[k];i;i=e[i].nex){
if(d[e[i].v]==d[k]+1&&(f=lian(e[i].v,min(a,e[i].cap)))>0){
flow+=f;a-=f;
e[i].cap-=f;e[i^1].cap+=f;
if(!a)break;
}
}
return flow;
}
void dfs(int k,int fa,int num){
if(w[k]<0){ansv+=(1<<num);}fl[k]=1;
for(int i=head[k];i;i=e[i].nex){
if(e[i].v!=fa){
if(e[i].cap>0&&!fl[e[i].v])dfs(e[i].v,k,num);
}
}
}
int main()
{
cin>>n>>m;S=n+1,T=S+1;
for(int i=1;i<=n;i++){scanf("%d",&w[i]);if(w[i]>0)ansv+=w[i];}
for(int i=1;i<=m;i++)scanf("%d%d",&a1[i],&b1[i]);
for(int ws=30;ws>=0;ws--){
Q();
for(int i=1;i<=n;i++){
if(w[i]<0)continue;
if((w[i]&(1<<ws))>0)lj(S,i,inf),lj(i,S,0);
else lj(i,T,inf),lj(T,i,0);
}
for(int i=1;i<=m;i++){
lj(a1[i],b1[i],1),lj(b1[i],a1[i],0);
lj(a1[i],b1[i],0),lj(b1[i],a1[i],1);
}
ans=0;
while(BFS())ans+=lian(S,inf);
//cout<<ans<<endl;
anse+=1LL*ans*(1<<ws);
memset(fl,0,sizeof fl);
dfs(S,0,ws);
}
printf("%lld\n%lld\n",anse,ansv);
return 0;
}
Optimal Marks(optimal)的更多相关文章
- 图论(网络流):SPOJ OPTM - Optimal Marks
OPTM - Optimal Marks You are given an undirected graph G(V, E). Each vertex has a mark which is an i ...
- SPOJ OPTM - Optimal Marks
OPTM - Optimal Marks no tags You are given an undirected graph G(V, E). Each vertex has a mark whic ...
- SP839 Optimal marks(最小割)
SP839 Optimal marks(最小割) 给你一个无向图G(V,E). 每个顶点都有一个int范围内的整数的标记. 不同的顶点可能有相同的标记.对于边(u,v),我们定义Cost(u,v)= ...
- [SPOJ839]Optimal Marks
[SPOJ839]Optimal Marks 试题描述 You are given an undirected graph \(G(V, E)\). Each vertex has a mark wh ...
- 【bzoj2400】Spoj 839 Optimal Marks 按位最大流
Spoj 839 Optimal Marks Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 908 Solved: 347[Submit][Stat ...
- 【BZOJ2400】Spoj 839 Optimal Marks 最小割
[BZOJ2400]Spoj 839 Optimal Marks Description 定义无向图中的一条边的值为:这条边连接的两个点的值的异或值. 定义一个无向图的值为:这个无向图所有边的值的和. ...
- 839. Optimal Marks - SPOJ
You are given an undirected graph G(V, E). Each vertex has a mark which is an integer from the range ...
- 【SPOJ839】Optimal Marks 网络流
You are given an undirected graph G(V, E). Each vertex has a mark which is an integer from the range ...
- BZOJ2400: Spoj 839 Optimal Marks
Description 定义无向图中的一条边的值为:这条边连接的两个点的值的异或值. 定义一个无向图的值为:这个无向图所有边的值的和. 给你一个有n个结点m条边的无向图.其中的一些点的值是给定的,而其 ...
随机推荐
- 外网访问FTP服务,解决只能以POST模式访问Filezilla的问题
在内网可以正常使用PASV,但是在外网不行,导致数据传输慢或者根本连接不了,在FlashFXP中通过日志,找到了解决方法解决方法1.在Filezilla——Edit——Settings——Passiv ...
- double类型的小数,四舍五入保留两位小数
import java.math.BigDecimal; public class Kewai{ public static void main(String[] args) { double f = ...
- XGBoost算法原理小结
在两年半之前作过梯度提升树(GBDT)原理小结,但是对GBDT的算法库XGBoost没有单独拿出来分析.虽然XGBoost是GBDT的一种高效实现,但是里面也加入了很多独有的思路和方法,值得单独讲一讲 ...
- SummerVocation_Learning--java的线程同步
public class Test_XCTB implements Runnable{ Timer timer = new Timer(); public static void main(Strin ...
- 自动化运维工具——ansible命令使用(二)
一.Ansible系列命令使用 ansible命令执行过程 1 . 加载自己的配置文件 默认/etc/ansible/ansible.cfg 2 . 加载自己对应的模块文件,如command 3 . ...
- Linux时区修改
Linux修改时区的正确方法 CentOS和Ubuntu的时区文件是/etc/localtime,但是在CentOS7以后localtime以及变成了一个链接文件 [root@centos7 ~]# ...
- php短网址生成算法
<?php //短网址生成算法 class ShortUrl { //字符表 public static $charset = "0123456789ABCDEFGHIJKLMNOPQ ...
- [译]The Python Tutorial#3. An Informal Introduction to Python
3. An Informal Introduction to Python 在以下示例中,输入和输出以提示符(>>>和...)的出现和消失来标注:如果想要重现示例,提示符出现时,必须 ...
- python编写登录接口
要求: 输入用户名密码 认证成功显示欢迎信息 输错三次以后锁定 代码如下: # Author:YKwhile(True): select=input('请问是注册还是登录') if selec ...
- UVA11825 Hacker's Crackdown 二进制集合+关于子集的动态规划
题意:有N台服务器,全部服务器都直接运行着完全相同的N个任务.对于每台电脑,你都可以进行“一次”操作,使得某(自己选定)一种任务停止,且同时会使得其他和这台服务器直接相连的电脑上面相同的服务完全终止. ...