Fibonacci Tree

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4136    Accepted Submission(s): 1283

Problem Description
  Coach Pang is interested in Fibonacci numbers while Uncle Yang wants him to do some research on Spanning Tree. So Coach Pang decides to solve the following problem:
  Consider a bidirectional graph G with N vertices and M edges. All edges are painted into either white or black. Can we find a Spanning Tree with some positive Fibonacci number of white edges?
(Fibonacci number is defined as 1, 2, 3, 5, 8, ... )
 
Input
  The first line of the input contains an integer T, the number of test cases.
  For each test case, the first line contains two integers N(1 <= N <= 105) and M(0 <= M <= 105).
  Then M lines follow, each contains three integers u, v (1 <= u,v <= N, u<> v) and c (0 <= c <= 1), indicating an edge between u and v with a color c (1 for white and 0 for black).
 
Output
  For each test case, output a line “Case #x: s”. x is the case number and s is either “Yes” or “No” (without quotes) representing the answer to the problem.
 
Sample Input
2
4 4
1 2 1
2 3 1
3 4 1
1 4 0
5 6
1 2 1
1 3 1
1 4 1
1 5 1
3 5 1
4 2 1
 
Sample Output
Case #1: Yes
Case #2: No
 
Source
 
题意:N个顶点,M条边,每条边或为白色或为黑色( 1 or 0 ),问有没有用是斐波那契数的数目的白色边构成一棵生成树
题解:N个顶点构成的生成树有N-1条边 ,首先判断能否能构成生成树,图是否是联通的,无法构成则输出No
先使用所有的黑边 不断加边,看最多能使用多少条黑边使得不形成环 求得白边的使用的数量的下界
然后再使用所有的白边,不断的加边,看最多能使用多少条白边使得不形成环,求得白边使用的数量的上界
然后是否存在斐波那契数载这个区间

我们等于是要证明对于所有在min和max之间的白边数我们都能够达到。

考虑从最小的min开始,我总可以找到一条黑边,使得将它去掉在补上一条白边保持图联通。为什么呢,如果在某一个状态(设白边数为x)下,不存在一条黑边可以被白边代替,那么现在我们把所有黑边去掉,剩下x条白边,那我们知道,x一定等于max,因为若x<max,那么我们在算max的那个步骤中,先将这x条白边加入,还可以在加入max-x条白边使得不存在环,那么这与没有一条黑边可以被白边代替矛盾,所以这就证明了从min到max我都可以达到

 
 #include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
struct node
{
int u,v,c;
} N[];
int fib[];
int fa[];
int t;
int n,m;
int coun;
int find(int root)
{
if(root==fa[root])
return root;
else
return fa[root]=find(fa[root]);
}
void unin(int a,int b)
{
int aa=find(a);
int bb=find(b);
if(aa!=bb)
fa[aa]=bb;
}
void init()
{
for(int i=; i<=n; i++)
fa[i]=i;
}
void fi()
{
fib[]=;
fib[]=;
for(int i=;; i++)
{
fib[i]=fib[i-]+fib[i-];
if(fib[i]>)
{
coun=i;
break;
}
}
}
int kruscal(int exm)
{
init();
int k=;
for(int i=; i<=m; i++)
{
if(N[i].c!=exm)
{
if(find(N[i].u)!=find(N[i].v))
{
k++;
unin(N[i].u,N[i].v);
}
}
}
return k;
}
int main()
{
fi();
while(scanf("%d",&t)!=EOF)
{
for(int j=; j<=t; j++)
{
scanf("%d %d",&n,&m);
for(int i=; i<=m; i++)
scanf("%d %d %d",&N[i].u,&N[i].v,&N[i].c);
printf("Case #%d: ",j);
int zha;
zha=kruscal();//可以使用白边和黑边
if(zha!=(n-))//判环
{
printf("No\n");
continue;
}
int l=n--kruscal();//构成生成树的白边数量的下限
int r=kruscal();// 构成生成树的白边数量的上限
int flag=;
for(int i=; i<coun; i++)//判断是否存在满足条件的fib
{
if(fib[i]>=l&&fib[i]<=r)
{
printf("Yes\n");
flag=;
break; }
}
if(flag==)
printf("No\n");
}
}
return ;
}

HDU 4786 最小生成树变形 kruscal(13成都区域赛F)的更多相关文章

  1. 36th成都区域赛网络赛 hdoj4039 The Social Network(建图+字符串处理)

    这题是某年成都区域赛网络赛的一题. 这题思路非常easy,可是从时间上考虑,不妨不要用矩阵存储,我用的链式前向星. 採用线上查询.利用map对字符串编号,由于非常方便.要推荐的朋友,事实上就是朋友的朋 ...

  2. HDU 4786 Fibonacci Tree (2013成都1006题)

    Fibonacci Tree Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  3. HDU 4731 Minimum palindrome (2013成都网络赛,找规律构造)

    Minimum palindrome Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  4. HDU 4786 Fibonacci Tree (2013成都1006题) 最小生成树+斐波那契

    题意:问生成树里能不能有符合菲波那切数的白边数量 思路:白边 黑边各优先排序求最小生成树,并统计白边在两种情况下数目,最后判断这个区间就可以.注意最初不连通就不行. #include <stdi ...

  5. hdu 4786 最小生成树与最大生成树

    /* 题意 :有一些边权值为1和0,判断是否存在一个生成树使得他的总权值为一个斐波那契数. 解法:建立一个最小生成树向里面加权值为1的边替换为0的边,保证原来的联通.因为权值为1,可直接求出最大生成树 ...

  6. hdu 4081 最小生成树变形

    /*关于最小生成树的等效边,就是讲两个相同的集合连接在一起 先建立一个任意最小生成树,这条边分开的两个子树的节点最大的一个和为A,sum为最小生成树的权值和,B为sum-当前边的权值 不断枚举最小生成 ...

  7. HDU 4802 && HDU 4803 贪心,高精 && HDU 4804 轮廓线dp && HDU 4805 计算几何 && HDU 4811 (13南京区域赛现场赛 题目重演A,B,C,D,J)

    A.GPA(HDU4802): 给你一些字符串对应的权重,求加权平均,如果是N,P不计入统计 GPA Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  8. HDU 6229 Wandering Robots(2017 沈阳区域赛 M题,结论)

    题目链接  HDU 6229 题意 在一个$N * N$的格子矩阵里,有一个机器人. 格子按照行和列标号,左上角的坐标为$(0, 0)$,右下角的坐标为$(N - 1, N - 1)$ 有一个机器人, ...

  9. HDU 4737 A Bit Fun 2013成都 网络赛 1010

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4737 题目大意:给定一系列数,F(i,j)表示对从ai到aj连续求或运算,(i<=j)求F(i, ...

随机推荐

  1. Linux下Jenkins与GitHub自动构建NetCore与部署

    今天我们来谈谈NetCore在Linux底下的持续集成与部署.NetCore我就不多介绍了,持续集成用的是Jenkins,源代码管理器用的是GitHub.我们就跟着博文往下走吧. 1.Linux环境 ...

  2. 零基础快速入门SpringBoot2.0教程 (三)

    一.SpringBoot Starter讲解 简介:介绍什么是SpringBoot Starter和主要作用 1.官网地址:https://docs.spring.io/spring-boot/doc ...

  3. 避免修改Android.mk添加cpp文件路径

    手工输入项目需要编译的cpp文件到Android.mk里的缺点 1)繁琐,如果cpp文件很多,简直无法忍受 2)手工输入过程中容易出现错误 3)如果cpp文件更改名称,需要修改android.mk文件 ...

  4. Vuex的简单了解

    vuex的官网了解:https://vuex.vuejs.org/zh/guide/ 一.什么是vuex? Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式.它采用集中式存储管理应用的所 ...

  5. HH的项链题解(离线思想+链表+树状数组)

    本人第一篇博客重磅推出!!! 希望各位朋友以后多多捧场也多给写意见(我个人喜欢把题解写得啰嗦一点,因为这样方便理解,各位巨佬勿喷) 来讲一道提高+/省选-的骚题:HH的项链(这个HH你理解成皇后呵呵哈 ...

  6. TO_DATS() AS ABAP_DATE

    有的时候一个想不到的小问题,,才是致命的问题!

  7. Python基础:输入与输出(I/O)

    来做一个NLP任务 步骤为: 1.读取文件: 2.去除所有标点符号和换行符,并把所有大写变成小写: 3.合并相同的词,统计每个词出现的频率,并按照词频从大到小排序: 4.将结果按行输出到文件 out. ...

  8. Python装饰器使用规范案例详解

    由于函数也是一个对象,而且函数对象可以被赋值给变量,所以,通过变量也能调用该函数. >>> def now(): ... print('2015-3-25') ... >> ...

  9. TI C6000优化手册——让代码看起来像钉子

    DSP芯片的出现,是为了解决大量的数字运算问题.通过集成专用的加法器.乘法器.地址产生器.复杂逻辑等硬件单元,DSP能实现比普通单片机更快速的数字运算,使处理器更适用于实时性高.复杂度强的处理场合.也 ...

  10. Linux命令之---diff

    命令介绍 diff命令可以酌行比较纯文本文件内的内容,并输出文件的差异. 命令格式 diff [option] [file1] [file2] 举例子 1)比较俩文本文件 [root@king ~]# ...