信号量机制:

struct sempahore是其结构,定义如下
  1. struct semaphore {
  2. atomic_t count;//资源数目
  3. int sleepers;//等待进程数目
  4. wait_queue_head_t wait;//等待队列
  5. #if WAITQUEUE_DEBUG
  6. long __magic;
  7. #endif
  8. };

down操作成功(减后结果非负数)那就在标号1处结束down操作,转到临界区.
如果减为负数,跳转到2标号,并且调用call_down_failed,进入睡眠,一直要到唤醒并拿到资源才返回跳转到1标号,结束down操作进入临界区
  1. /*
  2. * This is ugly, but we want the default case to fall through.
  3. * "__down_failed" is a special asm handler that calls the C
  4. * routine that actually waits. See arch/i386/kernel/semaphore.c
  5. */
  6. static inline void down(struct semaphore * sem)
  7. {
  8. #if WAITQUEUE_DEBUG
  9. CHECK_MAGIC(sem->__magic);
  10. #endif
  11. __asm__ __volatile__(
  12. "# atomic down operation\n\t"
  13. LOCK "decl %0\n\t" /* --sem->count lock字段把总线锁住,防止其他cpu干扰*/
  14. "js 2f\n" /*如果小于0,那就跳转到2号*/
  15. "1:\n" /*成功拿到,从此处进入临界区*/
  16. ".section .text.lock,\"ax\"\n"
  17. "2:\tcall __down_failed\n\t" /*count--后为负值,休眠*/
  18. "jmp 1b\n"/*失败睡眠,但经过一段时间被唤醒,并且进入临界区,就跳转到1*/
  19. ".previous"
  20. :"=m" (sem->count)
  21. :"c" (sem)
  22. :"memory");
  23. }

__down_failed源码,这里的目的只是为了调用__down函数
  1. asm(
  2. ".align 4\n"
  3. ".globl __down_failed\n"
  4. "__down_failed:\n\t"
  5. "pushl %eax\n\t"
  6. "pushl %edx\n\t"
  7. "pushl %ecx\n\t"
  8. "call __down\n\t"
  9. "popl %ecx\n\t"
  10. "popl %edx\n\t"
  11. "popl %eax\n\t"
  12. "ret"
  13. );

__down将判断资源是否存在,不存在睡眠,如果被唤醒那就从等待队列删除,并且唤醒其他等待队列进程
  1. void __down(struct semaphore * sem)
  2. {
  3. struct task_struct *tsk = current;
  4. DECLARE_WAITQUEUE(wait, tsk);//wait代表tsk
  5. tsk->state = TASK_UNINTERRUPTIBLE;//设置为睡眠状态
  6. add_wait_queue_exclusive(&sem->wait, &wait);//把当前进程的等待队列元素wait加入到sem->wait等待队列队尾
  7. spin_lock_irq(&semaphore_lock);
  8. sem->sleepers++;//等待进程数目+1
  9. for (;;) {
  10. int sleepers = sem->sleepers;//禁止本地中断并获取指定的锁
  11. /*返回非0,表示进程需要等待
  12. * 假设有2个进程,进程资源已经被占用,当前进程执行down失败,跳转到这里,等待调度
  13. 结郭前一个进程归还了资源,count变为0(之前down2次为-1),sleeper-1也为0,相加等于0,于是可以进入临界区
  14. */
  15. if (!atomic_add_negative(sleepers - 1, &sem->count)) {//返回0表示可以进入临界区
  16. sem->sleepers = 0;//睡眠的进程为0,因为要唤醒这进程了
  17. break;
  18. }
  19. sem->sleepers = 1; /* 没法到临界区,那就需要阻塞,执行到这,设置为1,那就只有us - see -1 above */
  20. spin_unlock_irq(&semaphore_lock);
  21. schedule();//调度
  22. tsk->state = TASK_UNINTERRUPTIBLE;//将当前进程设置为睡眠状态
  23. spin_lock_irq(&semaphore_lock);
  24. }
  25. spin_unlock_irq(&semaphore_lock);//解锁
  26. remove_wait_queue(&sem->wait, &wait);//当前进程可以进入临界区后,从wait队列移除
  27. tsk->state = TASK_RUNNING;//设置为可执行状态
  28. wake_up(&sem->wait);//唤醒等待队列(然而等待队列很多进程依旧无法进入临界区)
  29. }
缺陷:优先级倒转,优先级高进程在外等待,在临界区的进程优先级很低,一旦优先级低的进程在临界区受阻睡眠,也得不到及时调度,优先级高进程会被拖累,解决办法:把高优先级借给进入临界区的进程

接下来分析up函数
  1. /*
  2. * Note! This is subtle. We jump to wake people up only if
  3. * the semaphore was negative (== somebody was waiting on it).
  4. * The default case (no contention) will result in NO
  5. * jumps for both down() and up().
  6. */
  7. static inline void up(struct semaphore * sem)
  8. {
  9. #if WAITQUEUE_DEBUG
  10. CHECK_MAGIC(sem->__magic);
  11. #endif
  12. __asm__ __volatile__(
  13. "# atomic up operation\n\t"
  14. LOCK "incl %0\n\t" /* ++sem->count */
  15. "jle 2f\n"//如果资源充足(也就是递增结果为正数,直接从1:跳出临界区,不用唤醒阻塞进程(应该说没有阻塞临界区的进程)
  16. "1:\n"
  17. ".section .text.lock,\"ax\"\n"
  18. "2:\tcall __up_wakeup\n\t" /*递增结果为负数或者非0值,就唤醒阻塞进程*/
  19. "jmp 1b\n"
  20. ".previous"
  21. :"=m" (sem->count)
  22. :"c" (sem)
  23. :"memory");
  24. }

__up_wakup的目的也是调用__up
  1. asm(
  2. ".align 4\n"
  3. ".globl __up_wakeup\n"
  4. "__up_wakeup:\n\t"
  5. "pushl %eax\n\t"
  6. "pushl %edx\n\t"
  7. "pushl %ecx\n\t"
  8. "call __up\n\t"
  9. "popl %ecx\n\t"
  10. "popl %edx\n\t"
  11. "popl %eax\n\t"
  12. "ret"
  13. );

  1. /*
  2. * Semaphores are implemented using a two-way counter:
  3. * The "count" variable is decremented for each process
  4. * that tries to acquire the semaphore, while the "sleeping"
  5. * variable is a count of such acquires.
  6. *
  7. * Notably, the inline "up()" and "down()" functions can
  8. * efficiently test if they need to do any extra work (up
  9. * needs to do something only if count was negative before
  10. * the increment operation.
  11. *
  12. * "sleeping" and the contention routine ordering is
  13. * protected by the semaphore spinlock.
  14. *
  15. * Note that these functions are only called when there is
  16. * contention on the lock, and as such all this is the
  17. * "non-critical" part of the whole semaphore business. The
  18. * critical part is the inline stuff in <asm/semaphore.h>
  19. * where we want to avoid any extra jumps and calls.
  20. */
  21. /*
  22. * Logic:
  23. * - only on a boundary condition do we need to care. When we go
  24. * from a negative count to a non-negative, we wake people up.
  25. * - when we go from a non-negative count to a negative do we
  26. * (a) synchronize with the "sleeper" count and (b) make sure
  27. * that we're on the wakeup list before we synchronize so that
  28. * we cannot lose wakeup events.
  29. */
  30. void __up(struct semaphore *sem)
  31. {
  32. wake_up(&sem->wait);//唤醒等待队列中的进程
  33. }
  1. #define wake_up(x) __wake_up((x),TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,WQ_FLAG_EXCLUSIVE)

  1. void __wake_up(wait_queue_head_t *q, unsigned int mode, unsigned int wq_mode)
  2. {
  3.     __wake_up_common(q, mode, wq_mode, 0);
  4. }

posix信号量与内核信号量概念基本一样,不过posix信号量可以用于位于内核外临界区的不同进程.而内核信号量只可以用于临界区位于内核
互斥锁(也就是mutex.一般用于线程互斥),不过可以通过设置线程锁属性用于不同进程通信,为了达到多进程共享的需要,互斥锁对象需要创建在共享内存中
文件锁用于2个进程访问一个文件
自旋锁,读写锁只可用于线程互斥
信号量分为匿名信号量与有名信号量,前一个用于线程互斥,后一个用于进程同步
大内核锁也是用来保护临界区资源,避免出现多个处理器上的进程同时访问同一区域的

linux内核情景分析之内核中的互斥操作的更多相关文章

  1. 几个常用内核函数(《Windows内核情景分析》)

    参考:<Windows内核情景分析> 0x01  ObReferenceObjectByHandle 这个函数从句柄得到对应的内核对象,并递增其引用计数. NTSTATUS ObRefer ...

  2. [1]windows 内核情景分析---说明

    本文说明:这一系列文章(笔记)是在看雪里面下载word文档,现转帖出来,希望更多的人能看到并分享,感谢原作者的分享精神. 说明 本文结合<Windows内核情景分析>(毛德操著).< ...

  3. windows内核情景分析之—— KeRaiseIrql函数与KeLowerIrql()函数

    windows内核情景分析之—— KeRaiseIrql函数与KeLowerIrql()函数 1.KeRaiseIrql函数 这个 KeRaiseIrql() 只是简单地调用 hal 模块的 KfRa ...

  4. [2]windows内核情景分析--系统调用

    Windows的地址空间分用户模式与内核模式,低2GB的部分叫用户模式,高2G的部分叫内核模式,位于用户空间的代码不能访问内核空间,位于内核空间的代码却可以访问用户空间 一个线程的运行状态分内核态与用 ...

  5. [7] Windows内核情景分析---线程同步

    基于同步对象的等待.唤醒机制: 一个线程可以等待一个对象或多个对象而进入等待状态(也叫睡眠状态),另一个线程可以触发那个等待对象,唤醒在那个对象上等待的所有线程. 一个线程可以等待一个对象或多个对象, ...

  6. [4]Windows内核情景分析---内核对象

    写过Windows应用程序的朋友都常常听说"内核对象"."句柄"等术语却无从得知他们的内核实现到底是怎样的, 本篇文章就揭开这些技术的神秘面纱. 常见的内核对象 ...

  7. [12]Windows内核情景分析 --- MDI

    Mdl意为'内存映射描述符'.'缓冲描述符',一个mdl就代表一个缓冲.(任意一块物理内存,可以同时映射到用户地址空间和系统地址空间的) 设备IO方式分为三种:缓冲方式.直接IO方式.直接方式 缓冲方 ...

  8. [3]windows内核情景分析--内存管理

    32位系统中有4GB的虚拟地址空间 每个进程有一个地址空间,共4GB,(具体分为低2GB的用户地址空间+高2GB的内核地址空间) 各个进程的用户地址空间不同,属于各进程专有,内核地址空间部分则几乎完全 ...

  9. c# 分析SQL语句中的表操作

    最近写了很多方向的总结和demo.基本包含了工作中的很多方面,毕竟c#已经高度封装并且提供了很多类库.前面已经总结了博文.最近2天突然感觉前面的SQL分析阻组件的确麻烦,也注意看了下.为了方便大家学习 ...

随机推荐

  1. 通过sudo提权方式控制公司人员权限

    #通过visudo编辑/etc/sudoers Runas_Alias OP = root #定义使用sudo的时候以哪个用户执行命令,一般都是使用root #命令别名 Cmnd_Alias NETW ...

  2. 一个batch的数据如何做反向传播

    一个batch的数据如何做反向传播 对于一个batch内部的数据,更新权重我们是这样做的: 假如我们有三个数据,第一个数据我们更新一次参数,不过这个更新只是在我们脑子里,实际的参数没有变化,然后使用原 ...

  3. Python9-MySQL数据库安装及基本操作-day42

    MySQL 单机程序(自己DB) 单机程序(共用DB)MySQL:用于管理文件的一个软件 -服务端软件 -socket服务端 -本地文件操作 -解析指令[SQL语句] -客户端软件(各种各样) -so ...

  4. STM32位带操作

    STM32的位带操作是基于cortex内核自带的,而不是st公司独创.基本的思路就是用一个32位的地址空间访问一个bit,因为stm32只支持32位数据的读取,不像51单片机一样,是可以单独对一位操作 ...

  5. cut(树形DP)

    Description F大爷热爱切树.今天他找到一棵黑白树,不到两秒钟,F大爷就把这棵树切掉了.已知原先树上共n个点,每个点都是黑点或者白点,F大爷切去若干条边后,分成的若干个连通子树中每块恰有一个 ...

  6. 子窗体与父窗体调用对方js方法

    有时候为了减少一个页面内的代码量,会将部分内容放到子窗体中,如后台管理中用iframe来进行管理 <div> <iframe id="dviframe" src= ...

  7. 初识Java之入门学习(扫盲)

    一,开发环境的配置 1. jdk1.8的安装 2. 环境变量的配置 3.MyEclipse8.5的安装 jdk是什么: JDK 是Java开发工具包 (Java Development Kit ) 的 ...

  8. 修改python新建文件时的模板

  9. install golang plugin in webstrom

    https://github.com/go-lang-plugin-org/go-lang-idea-plugin/wiki/Documentation

  10. optparser 模块 提取IP,端口,用户名,密码参数模板

    import optparse #class FtpClient(object): #自定义类可以自己修改 '''ftp客户端''' #def __init__(self): parser = opt ...