Chinese remainder theorem again

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2415    Accepted Submission(s): 997

Problem Description
我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的:
假设m1,m2,…,mk两两互素,则下面同余方程组:
x≡a1(mod m1)
x≡a2(mod m2)

x≡ak(mod mk)
在0<=<m1m2…mk内有唯一解。
记Mi=M/mi(1<=i<=k),因为(Mi,mi)=1,故有二个整数pi,qi满足Mipi+miqi=1,如果记ei=Mi/pi,那么会有:
ei≡0(mod mj),j!=i
ei≡1(mod mj),j=i
很显然,e1a1+e2a2+…+ekak就是方程组的一个解,这个解加减M的整数倍后就可以得到最小非负整数解。
这就是中国剩余定理及其求解过程。
现在有一个问题是这样的:
一个正整数N除以M1余(M1 - a),除以M2余(M2-a), 除以M3余(M3-a),总之, 除以MI余(MI-a),其中(a<Mi<100 i=1,2,…I),求满足条件的最小的数。
 
Input
输入数据包含多组测试实例,每个实例的第一行是两个整数I(1<I<10)和a,其中,I表示M的个数,a的含义如上所述,紧接着的一行是I个整数M1,M1...MI,I=0 并且a=0结束输入,不处理。
 
Output
对于每个测试实例,请在一行内输出满足条件的最小的数。每个实例的输出占一行。
 
Sample Input
2 1
2 3
0 0
 
Sample Output
5
 
本意是想学习一下中国剩余定理,,结果碰到一水题。
N%Mi = (Mi-a)%Mi => (N+a)%Mi = 0
所以题目就转化为了I个数的最小公倍数,记得开_int64
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
#include <math.h>
using namespace std;
typedef long long LL;
LL gcd(LL a,LL b){
return b==?a:gcd(b,a%b);
}
LL lcm(LL a,LL b){
return a/gcd(a,b)*b;
}
int main()
{
int n;
LL a;
while(scanf("%d%lld",&n,&a)!=EOF,n&&a){
LL ans = ,num;
for(int i=;i<n;i++){
scanf("%lld",&num);
ans = lcm(ans,num);
}
printf("%lld\n",ans-a);
}
return ;
}
 

hdu 1788(多个数的最小公倍数)的更多相关文章

  1. hdu 1019 n个数的最小公倍数

    The least common multiple (LCM) of a set of positive integers is the smallest positive integer which ...

  2. HDU 1019 (多个数的最小公倍数)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1019 Least Common Multiple Time Limit: 2000/1000 MS (J ...

  3. n个数的最小公倍数

    Description 求n个数的最小公倍数.   Input 输入包含多个测试实例,每个测试实例的开始是一个正整数n,然后是n个正整数.   Output 为每组测试数据输出它们的最小公倍数,每个测 ...

  4. HDOJ-ACM1019(JAVA) 多个数的最小公倍数

    题意:求多个数的最小公倍数 很简单,但是我一开始的做法,估计会让结果越界(超过int的最大值) import java.util.*; import java.io.*; public class M ...

  5. HDU_2028——求多个数的最小公倍数

    Problem Description 求n个数的最小公倍数.   Input 输入包含多个测试实例,每个测试实例的开始是一个正整数n,然后是n个正整数.   Output 为每组测试数据输出它们的最 ...

  6. HDU - 1019-Least Common Multiple(求最小公倍数(gcd))

    The least common multiple (LCM) of a set of positive integers is the smallest positive integer which ...

  7. hdu 1788 Chinese remainder theorem again(最小公倍数)

    Problem Description 我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的: 假设m1,m2,-,mk两两互素,则下面同余方程组: x≡a1(mod m1) x≡a2( ...

  8. hdu 1788 最小公倍数(这题面。。。)

    Chinese remainder theorem again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 ...

  9. HDU——1019Least Common Multiple(多个数的最小公倍数)

    Least Common Multiple Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Ot ...

随机推荐

  1. 初学Python不知道做什么项目好?来看看练手项目如何?

    对于初学者来说,在学习编程的初期,由于基础知识点的学习是比较无聊的,所以大家可能会有所反感,为了减弱大家的反感,我给大家带来一个简单的小项目——实现屏保计时器,这个项目就算是刚学Python的小伙伴, ...

  2. 4 Values whose Sum is 0 POJ - 2785

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 29243   Accep ...

  3. 模拟:HDU1034-Candy Sharing Game

    解题心得: 1.直接模拟每一次分一半就行了,模拟过程,记录轮数,但是也看到有些大神使用的是链表,估计链表才是真的做法吧. 题目: Candy Sharing Game Time Limit: 2000 ...

  4. poj 3045 叠罗汉问题 贪心算法

    题意:将n头牛叠起来,每头牛的力气 s体重 w  倒下的风险是身上的牛的体重的和减去s 求最稳的罗汉倒下去风险的最大值 思路: 将s+w最大的放在下面,从上往下看 解决问题的代码: #include& ...

  5. AngularJS 之1-初识

    摘要:本文主要记录第一次接触AngularJS的笔记,现在在我面前就是一张白纸+一点简单的html知识. 1.首先在<head>中加 <script src="一个网址(具 ...

  6. 【面试】一篇文章帮你彻底搞清楚“I/O多路复用”和“异步I/O”的前世今生

    曾经的VIP服务 在网络的初期,网民很少,服务器完全无压力,那时的技术也没有现在先进,通常用一个线程来全程跟踪处理一个请求.因为这样最简单. 其实代码实现大家都知道,就是服务器上有个ServerSoc ...

  7. 创建OpenStack的存储云

    OPENSTACK内部 OpenStack是一个开源的云平台项目,是由NASA发起,Rackspace在2010作为一个项目进行主导.源代码是由OpenStack基金会管理并在准许Apache许可下发 ...

  8. Python学习之正则表达式初探

    正则表达式 正则表达式 (或 regexes ) 是通用的文本模式匹配的方法. Django URLconfs 允许你 使用任意的正则表达式来做强有力的URL映射,不过通常你实际上可能只需要使用很少的 ...

  9. jmeter配置分布式调度:远程启动其他机器实现多台pc一起并发

    原文转自:https://www.cnblogs.com/whitewasher/p/6946207.html Jmeter分布式部署测试-----远程连接多台电脑做压力性能测试 在使用Jmeter进 ...

  10. Goole Search Auto Complete

    这个项目就九章算法大数据课程的一个项目.主要分为两步: 第一步是 offline 建立 数据库 我们用两个map reduce 的data pipline 来实现. 第二步是 online显示把数据里 ...