要将答案看做是小问题的贡献和

Description

给定一棵n个节点的树,从1到n标号。选择k个点,你需要选择一些边使得这k个点通过选择的边联通,目标是使得选择的边数最少。

现需要计算对于所有选择k个点的情况最小选择边数的总和为多少。
样例解释:

一共有三种可能:(下列配图蓝色点表示选择的点,红色边表示最优方案中的边)

选择点{1,2}:至少要选择第一条边使得1和2联通。

 

选择点{1,3}:至少要选择第二条边使得1和3联通。

选择点{2,3}:两条边都要选择才能使2和3联通。

Input

第一行两个数n,k(1<=k<=n<=100000)
接下来n-1行,每行两个数x,y描述一条边(1<=x,y<=n)

Output

一个数,答案对1,000,000,007取模。

Input示例

3 2
1 2
1 3

Output示例

4

题目分析

初看上去好像要结合树形结构做一些麻烦的事情……例如判断树中长度为k的连通块个数之类的。

但是实际上问题可以看做是每一条边对于答案贡献了$si$,答案就是$\sum{si}$。

那么单独的贡献自然应该是选择了横跨这条边的两个点的情况。

这里就考虑一下问题的反面:选择了不横跨这条边的情况,应该是$C_{u_{size}}^{k}+C_{v_{size}}^{k}$,其中$u_{size}$和$v_{size}$分别表示这条边两边有多少个点。

于是就愉快地解决这题了。

 #include<bits/stdc++.h>
typedef long long ll;
const ll MO = ;
const int maxn = ;
const int maxm = ; ll fac[maxn],facinv[maxn],ans,sum;
int n,k;
int size[maxn];
int edges[maxm],nxt[maxm],head[maxn],edgeTot; int read()
{
char ch = getchar();
int num = ;
bool fl = ;
for (; !isdigit(ch); ch = getchar())
if (ch=='-') fl = ;
for (; isdigit(ch); ch = getchar())
num = (num<<)+(num<<)+ch-;
if (fl) num = -num;
return num;
}
void addedge(int u, int v)
{
edges[++edgeTot] = v, nxt[edgeTot] = head[u], head[u] = edgeTot;
edges[++edgeTot] = u, nxt[edgeTot] = head[v], head[v] = edgeTot;
}
void dfs1(int x, int fa)
{
size[x] = ;
for (int i=head[x]; i!=-; i=nxt[i])
if (edges[i]!=fa) dfs1(edges[i], x), size[x] += size[edges[i]];
}
ll c(ll n, ll m){return n < m?:fac[n]*facinv[n-m]%MO*facinv[m]%MO;}
void dfs2(int x, int fa)
{
for (int i=head[x]; i!=-; i=nxt[i])
{
int v = edges[i];
if (fa==v) continue;
ans = (ans+sum-c(size[v], k)-c(n-size[v], k))%MO;
dfs2(v, x);
}
}
int main()
{
memset(head, -, sizeof head);
n = read(), k = read(), fac[] = facinv[] = facinv[] = ;
for (int i=; i<n; i++) addedge(read(), read());
for (int i=; i<=n; i++) facinv[i] = (MO-MO/i)*facinv[MO%i]%MO;
for (int i=; i<=n; i++)
fac[i] = (fac[i-]*i)%MO, facinv[i] = facinv[i]*facinv[i-]%MO;
sum = c(n, k);
dfs1(, );
dfs2(, );
printf("%lld\n",(ans+MO)%MO);
return ;
}

END

【计数】51nod1677 treecnt的更多相关文章

  1. NOIP2018 - 暑期博客整理

    暑假写的一些博客复习一遍.顺便再写一遍或者以现在的角度补充一点东西. 盛暑七月 初涉基环外向树dp&&bzoj1040: [ZJOI2008]骑士 比较经典的基环外向树dp.可以借鉴的 ...

  2. 【树形背包】bzoj4033: [HAOI2015]树上染色

    仔细思考后会发现和51nod1677 treecnt有异曲同工之妙 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 ...

  3. 【51nod1677】treecnt(树上数学题)

    点此看题面 大致题意: 给你一个节点从1~n编号的树,让你从中选择k个节点并通过选择的边联通,且要使选择的边数最少,让你计算对于所有选择k个节点的情况最小选择边数的总和. 题解 这道题乍一看很麻烦:最 ...

  4. 计数排序(counting-sort)——算法导论(9)

    1. 比较排序算法的下界 (1) 比较排序     到目前为止,我们已经介绍了几种能在O(nlgn)时间内排序n个数的算法:归并排序和堆排序达到了最坏情况下的上界:快速排序在平均情况下达到该上界.   ...

  5. Objective-C内存管理之引用计数

    初学者在学习Objective-c的时候,很容易在内存管理这一部分陷入混乱状态,很大一部分原因是没有弄清楚引用计数的原理,搞不明白对象的引用数量,这样就当然无法彻底释放对象的内存了,苹果官方文档在内存 ...

  6. 最小生成树计数 bzoj 1016

    最小生成树计数 (1s 128M) award [问题描述] 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一 ...

  7. swift学习笔记5——其它部分(自动引用计数、错误处理、泛型...)

    之前学习swift时的个人笔记,根据github:the-swift-programming-language-in-chinese学习.总结,将重要的内容提取,加以理解后整理为学习笔记,方便以后查询 ...

  8. [LeetCode] Count and Say 计数和读法

    The count-and-say sequence is the sequence of integers beginning as follows:1, 11, 21, 1211, 111221, ...

  9. C++ 引用计数技术及智能指针的简单实现

    一直以来都对智能指针一知半解,看C++Primer中也讲的不够清晰明白(大概是我功力不够吧).最近花了点时间认真看了智能指针,特地来写这篇文章. 1.智能指针是什么 简单来说,智能指针是一个类,它对普 ...

随机推荐

  1. scrapy框架的命令行解释

    scrapy框架的命令解释 创建爬虫项目 scrapy startproject 项目名例子如下: scrapy startproject test1 这个时候爬虫的目录结构就已经创建完成了,目录结构 ...

  2. [软件工程基础]PhyLab 功能规格说明书

    前言 Sigma 团队想要在 PhyLab 上做的增量改进见需求分析.六个功能中只有题库和图文流程需要对界面进行大的改动,剩下的功能在用户看来仅仅是在原有界面上有内容上的扩充,因此不在功能规格说明书的 ...

  3. Codeforces 526F Pudding Monsters

    先把题目抽象一下: 有一个静态的数组,求有多少个区间[i,j]满足:j-i==max{ai,...,aj}-min{ai,...,aj} 也就是要求max-min+i-j==0的区间数 所以肿么做呢? ...

  4. 洛谷 P4137 Rmq Problem / mex

    https://www.luogu.org/problemnew/show/P4137 只会log^2的带修主席树.. 看了题解,发现有高妙的一个log做法:权值线段树上,设数i对应的值ma[i]为数 ...

  5. 19 标签:xml或者html

    1       标签:xml或者html 1.1  使用XmlSlurper解析xml groovy处理xml非常容易.XmlSlurper 类用来处理xml.在处理xml方面,还有其他的处理方式,但 ...

  6. rsync服务的安装与配置

    rsync 服务的安装配置与客户端的同步操作   1. 使用xinetd服务运行rsync服务: 服务器端: 1.关闭selinux,设置iptables开放xinetd的873端口 2. yum - ...

  7. 使用em和rem替代px

    rem是指根元素的字体大小,默认情况下html的字体大小为:16px=1rem.而em是相对单位,是基于它的祖先元素计算的. 如果我们不指定html和body的字体大小,要得到12px的rem需要这样 ...

  8. npm 修改源地址

    修改源地址为淘宝 NPM 镜像 npm config set registry http://registry.npm.taobao.org/ 修改源地址为官方源 npm config set reg ...

  9. Ajax返回数据格式

      Ajax中返回数据的格式 Ajax中常见的返回数据的格式有三种:分别为文本,XML和JSON 返回的文本格式我们在上一堂课Ajax基础介绍中已经介绍过了 Ajax.php Form.html:通过 ...

  10. Java方式配置Spring

    概述 本文主要讲的是如何使用Java Bean来配置Spring,而不是用xml来配置Spring. 本文主要是代码,需要注意的都在注释里面. 代码打包下载地址(注:项目使用Maven构建) Java ...