G. Xor-matic Number of the Graph

http://codeforces.com/problemset/problem/724/G

题意:给你一张无向图。定义一个无序三元组(u,v,s)表示u到v的(不一定为简单路径)路径上xor值为s。求出这张无向图所有不重复三元组的s之和。1≤n≤10^5,1≤m≤2*10^5。

想法:

如果做过【Wc2011 xor】这道题目(题解),那么问题变得简单起来了。

①假设我们钦定一个(u,v),设任意一条u->v的路径xor值为X,该连通图所有小环xor值构成的序列为{Ai}。

那么(u,v)的所有路径的xor值可以由X xor {Ai}的子集xor值得到。于是一个(u,v)的 s 之和变成了求X xor{Ai}的子集可以得到多少个不同的数,这些不同的数的和是多少?

如果能知道{Ai}的子集xor值的值域,那么好办了。于是用线性基得到值域{T}。求和的话,按位考虑定义S(i)为{T}中第i为1的个数,为0的个数取个补集就好了。

对于一个(u,v):

②考虑所有的无序点对(u,v)的答案。上面说过任意一条u->v的路径都可以,不如就钦定是DFS遍历得到DFS树的树上路径。

树上两点路径xor值的求法很简单:设dis(i)表示第i个到根节点路径xor值。

dis(a,b)=dis(a) xor dis(lca(a,b)) xor dis(b) xor dis(lca(a,b))=dia(a) xor dis(b)。

根据上面求ans 的式子,ans只与X的第j位是什么有关,所以设cnt(i)表示两点路径xor值第i位为1的个数。cnt(i)可以利用上面dis(a,b)=dia(a) xor dis(b)求。

对于所有(u,v):

于是解决了。

#include<cstdio>
#include<vector>
#define ll long long
const int len(),MP();
struct Node{int nd;ll co;};
std::vector<Node>Edge[len+];
int n,m,u,v,top,ans,much,vis[len+];
ll sum,S[],cnt[],now[];//cnt(i) 统计 i-th =0的个数 now(i):dx^dy i-th==1的个数
ll st[len+],dis[len+],All,t;
struct Base_Linear
{
ll p[];int size;
void ins(ll x)
{
for(int j=;j>=;j--)
if((x>>j)&)
{
if(p[j])x^=p[j];
else {p[j]=x;size++;break;}
}
}
}BL;
template <class T>void read(T &x)
{
x=;int f=;char ch=getchar();
while(ch<''||ch>''){f=(ch=='-');ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
x=f?-x:x;
}
ll power(int a,int b)
{
ll t=,y=a;
for(;b;b>>=)
{
if(b&)t=(t*y)%MP;
y=(y*y)%MP;
}
return t;
}
void add(int a,int b,ll c){Edge[a].push_back((Node){b,c});}
void plus(ll x)
{
for(int j=;j<=;j++)
if(((x>>j)&)==)cnt[j]++;
}
void Dfs(int x)
{
much++; vis[x]=; plus(dis[x]); st[++top]=dis[x];
for(int v=,sz=Edge[x].size();v<sz;v++)
{
Node y=Edge[x][v];
if(vis[y.nd])BL.ins(dis[x]^dis[y.nd]^y.co);
else
{
dis[y.nd]=dis[x]^y.co;
Dfs(y.nd);
}
}
}
void Back()
{
for(int j=;j<=;j++)cnt[j]=now[j]=S[j]=;
for(int j=;j<=;j++)BL.p[j]=; BL.size=;
much=; All=;
}
void Total()
{
for(;top;top--)
{
for(int j=;st[top];j++,st[top]>>=)
if(st[top]&)now[j]=(now[j]+cnt[j])%MP;
}
for(int j=;j<=;j++)All|=BL.p[j];
for(int j=;All;j++,All>>=)
if(All&)S[j]=power(,BL.size-);
All=power(,BL.size); ll C=;
for(int j=;j<=;j++,C<<=,C%=MP)
{
sum=(ll)much*(much-)/;
ll t1=now[j]*(All-S[j])%MP;
ll t2=((sum-now[j])*S[j])%MP;
ans=(ans+C*t1+C*t2)%MP;
}
}
int main()
{
read(n),read(m);
for(int i=;i<=m;i++)
{
read(u),read(v),read(t);
add(u,v,t),add(v,u,t);
}
for(int i=;i<=n;i++)
if(!vis[i])//图可能不连通
{
Back();
Dfs(i);
Total();
}
ans+=ans<?MP:;
printf("%d",ans);
return ;
}

Codeforces 724 G Xor-matic Number of the Graph 线性基+DFS的更多相关文章

  1. codeforces 1101G (Zero XOR Subset)-less 前缀异或+线性基

    题目传送门 题意:给出一个序列,试将其划分为尽可能多的非空子段,满足每一个元素出现且仅出现在其中一个子段中,且在这些子段中任取若干子段,它们包含的所有数的异或和不能为0. 思路:先处理出前缀异或,这样 ...

  2. Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) G - Xor-matic Number of the Graph 线性基好题

    G - Xor-matic Number of the Graph 上一道题的加强版本,对于每个联通块需要按位算贡献. #include<bits/stdc++.h> #define LL ...

  3. Codeforces.724G.Xor-matic Number of the Graph(线性基)

    题目链接 \(Description\) 给定一张带边权无向图.若存在u->v的一条路径使得经过边的边权异或和为s(边权计算多次),则称(u,v,s)为interesting triple(注意 ...

  4. codeforces 724G - Xor-matic Number of the Graph 线性基+图

    题目传送门 题意:给出衣服无向带权图,问有多少对合法的$<u,v,s>$,要求$u$到$v$存在一条路径(不一定是简单路径)权值异或和等于$s$,并且$u<v$.求所有合法三元组的s ...

  5. 【BZOJ-2115】Xor 线性基 + DFS

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2142  Solved: 893[Submit][Status] ...

  6. 2115: [Wc2011] Xor (线性基+dfs)

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 5714  Solved: 2420 题目链接:https://w ...

  7. 【BZOJ2115】[Wc2011] Xor 高斯消元求线性基+DFS

    [BZOJ2115][Wc2011] Xor Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ...

  8. bzoj 2115: [Wc2011] Xor【线性基+dfs】

    -老是想到最长路上 其实可以这样:把每个环的xor和都存起来,然后任选一条1到n的路径的xor和ans,答案就是这个ans在环的线性基上跑贪心. 为什么是对的--因为可以重边而且是无相连通的,并且对于 ...

  9. 【题解】 bzoj2115: [Wc2011] Xor (线性基+dfs)

    bzoj2115,戳我戳我 Solution: 看得题解(逃,我太菜了,想不出这种做法 那么丢个链接 Attention: 板子别写错了 又写错了这次 \(long long\)是左移63位,多了会溢 ...

随机推荐

  1. linux下删除3分钟之前指定文件夹下的指定类型文件

    如果想要修改crontab,一般做以下的几步就可以了 将crontab 推到一个自定义的文件上 crontab -l>;tmp 编辑这个文件,做需要的修改 vi tmp 推回crontab cr ...

  2. monkey无规则压力测试

    例:monkey -p com.tencent.mtaexample -s 23  --throttle 100 --ignore-crashes --ignore-timeouts -v -v -v ...

  3. win32 API中GetSystemMetrics函数

    1. SM_ARRANGE: 用于说明系统如何安排最小化窗口,根据显示器的不同系统数据可能有所不同.其包含一个起始位置和方向.关于在程序中怎么使用我还没有见个这样的代码. 起始位置可为下列值之一: A ...

  4. 12.Python略有小成(生成器,推导式,内置函数,闭包)

    Python(生成器,推导式,内置函数,闭包) 一.生成器初始 生成器的本质就是迭代器,python社区中认为生成器与迭代器是一种 生成器与迭代器的唯一区别,生成器是我们自己用python代码构建成的 ...

  5. wcf双工通信

    一直以为感觉双工没弄懂,着实觉得很惆怅,在网上了解下双工的一些特点,直接上代码,以便以后项目中用的着: service层: 定义一个IDuplexHello服务接口 [ServiceContract( ...

  6. Linux上传下载工具FileZilla(GNU软件) 文件传输和配置文件修改

  7. 福昕阅读器把pdf某一页保存出来

    第一步: 第二步: 第三步: 第四步:点击保存即可

  8. LVM逻辑卷基本概念以及相关操作

    一.LVM概念 LVM(Logical Vloume Manager):它是linux环境下对磁盘进行管理的一种机制,正常挂载的磁盘在磁盘资源快要耗尽时,无法动态拉伸增加资源,或由于特殊情况需要动态缩 ...

  9. Kali下安装rar

    1.在kali中安装rar解压软件 方法一: apt-get install rar 方法二: 下载RAR:wget https://www.rarlab.com/rar/rarlinux-x64-5 ...

  10. DMA性能测试

    本程序主要用来计算DMA数据读写过程中所花费的总得时间周期,依据公式T=tStart+ceil(L/4)*2+ceil(L/256)*tTransform*2 因为tTransform是一个常量(通常 ...