Factorial

Problem Description

The most important part of a GSM network is so called Base Transceiver Station (BTS). These transceivers form the areas called cells (this term gave the name to the cellular phone) and every phone connects to the BTS with the strongest signal (in a little simplified view). Of course, BTSes need some attention and technicians need to check their function periodically.

ACM technicians faced a very interesting problem recently. Given a set of BTSes to visit, they needed to find the shortest path to visit all of the given points and return back to the central company building. Programmers have spent several months studying this problem but with no results. They were unable to find the solution fast enough. After a long time, one of the programmers found this problem in a conference article. Unfortunately, he found that the problem is so called “Travelling Salesman Problem” and it is very hard to solve. If we have N BTSes to be visited, we can visit them in any order, giving us N! possibilities to examine. The function expressing that number is called factorial and can be computed as a product 1.2.3.4….N. The number is very high even for a relatively small N.

The programmers understood they had no chance to solve the problem. But because they have already received the research grant from the government, they needed to continue with their studies and produce at least some results. So they started to study behaviour of the factorial function.

For example, they defined the function Z. For any positive integer N, Z(N) is the number of zeros at the end of the decimal form of number N!. They noticed that this function never decreases. If we have two numbers N1

Input

There is a single positive integer T on the first line of input. It stands for the number of numbers to follow. Then there is T lines, each containing exactly one positive integer number N, 1 <= N <= 1000000000.

Output

For every number N, output a single line containing the single non-negative integer Z(N).

Sample Input

6

3

60

100

1024

23456

8735373

Sample Output

0

14

24

253

5861

2183837


解题心得:

  1. 题意就是叫你算N!的答案末尾有多少个0,很水的题,别人的分析很好我就引用一下就不写分析了。

分析:题目要求解的是N阶乘的结果有多少个0?(1<=N<=1000000000)

注意一下几个方面:


1、任何一个自然数都可分解质因数。N!=1*2*3*(2*2)5(2*3)*…*N=2^a*3^b*5^c*7^d……=(2*5)^c*2^(a-c)*3^b*7^d……=10^c*2^(a-c)*3^b*7^d……

2、两数相乘产生0,是因为2和5相乘。又由于在分解质因数时小的质数的幂次一定>=大的质数的幂次,在N!中2的个数显然大于5的个数,故解决该题转化成找出N!中5的幂次。

3、如何找出5的幂次呢?其实就是 N!中:是5的倍数的数+是5^2的倍数的数+5^3的倍数的数+…..

如50!中:

含有10个5的倍数的数:5,15,20,25,30,35,40,45,50 [50/5=10]

含有2个5^2的倍数的数:25,50 [50/(5^2)=2]

可见N!中一共有12个5相乘,那么N!结果中的0也必有12个。


#include<bits/stdc++.h>
using namespace std;
int main()
{
long long n;
int t;
cin>>t;
while(t--)
{
cin>>n;
long long sum = 0;
while(n)
{
sum += n / 5;
n /= 5;
}
printf("%lld\n",sum);
}
return 0;
}

数学基础:HUD1124-Factorial(N!末尾0的个数)的更多相关文章

  1. 【CodeChef】Factorial(n!末尾0的个数)

    The most important part of a GSM network is so called Base Transceiver Station (BTS). These transcei ...

  2. POJ 1401:Factorial 求一个数阶乘的末尾0的个数

    Factorial Time Limit: 1500MS   Memory Limit: 65536K Total Submissions: 15137   Accepted: 9349 Descri ...

  3. Java 计算N阶乘末尾0的个数-LeetCode 172 Factorial Trailing Zeroes

    题目 Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in ...

  4. N的阶乘末尾0的个数和其二进制表示中最后位1的位置

    问题一解法:     我们知道求N的阶乘结果末尾0的个数也就是说我们在从1做到N的乘法的时候里面产生了多少个10, 我们可以这样分解,也就是将从0到N的数分解成因式,再将这些因式相乘,那么里面有多少个 ...

  5. LightOj 1090 - Trailing Zeroes (II)---求末尾0的个数

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1090 题意:给你四个数 n, r, p, q 求C(n, r) * p^q的结果中末尾 ...

  6. 神秘常量复出!用0x077CB531计算末尾0的个数 -- De Bruijn 序列

    http://www.matrix67.com/blog/archives/3985 神秘常量复出!用0x077CB531计算末尾0的个数 大家或许还记得 Quake III 里面的一段有如天书般的代 ...

  7. Algorithm --> 求阶乘末尾0的个数

    求阶乘末尾0的个数 (1)给定一个整数N,那么N的阶乘N!末尾有多少个0?比如:N=10,N!=3628800,N!的末尾有2个0. (2)求N!的二进制表示中最低位为1的位置. 第一题 考虑哪些数相 ...

  8. 求N的阶乘N!中末尾0的个数

    求N的阶乘N!中末尾0的个数 有道问题是这样的:给定一个正整数N,那么N的阶乘N!末尾中有多少个0呢?例如:N=10,N=3628800,则N!的末尾有两个0:直接上干货,算法思想如下:对于任意一个正 ...

  9. 牛客小白月赛6 水题 求n!在m进制下末尾0的个数 数论

    链接:https://www.nowcoder.com/acm/contest/135/C来源:牛客网 题目描述 其中,f(1)=1;f(2)=1;Z皇后的方案数:即在Z×Z的棋盘上放置Z个皇后,使其 ...

随机推荐

  1. ES6学习(1)

    let 和 const 命令 ES6 新增了let命令,用来声明变量.它的用法类似于var,但是所声明的变量,只在let命令所在的代码块内有效.for循环的计数器,就很合适使用let命令. 下面的代码 ...

  2. window.open()弹出窗口参数说明及居中设置

    window.open()可以弹出一个新的窗口,并且通过参数控制窗口的各项属性. 最基本的弹出窗口代码 window.open('httP://codeo.cn/'); window.open()各参 ...

  3. ArrayList集合--关于System.out.print(Object obj);的理解

    1.ArrayList集合中常用的方法 ArrayList<Student> stuArrayList = new ArrayList<>(); //定义一个集合对象 stuA ...

  4. 关于如何将html中的表格下载成csv格式的方法

    今天在网上看了很多方法,自己还是慢慢探索写出了最终效果 简单代码如下: <!DOCTYPE html> <html> <head> <meta content ...

  5. python 之正则表达式

    一.正则表达式 首先,我们需要感性的了解下什么是正则表达式,简单的是说“正则表达式”就是一个“表达式”,更准确定义是:“用一个简洁的方法来实现对“一组字符串”的表达式. 最终目的就是实现“一行胜千言” ...

  6. SDUT 1309 不老的传说问题 (区间DP)

    题意: 有一个环形序列,n个数字表示一种颜色,要求将白板环刷成一模一样的环,限制是每次最多只能刷连续的K个位置,问最少需要刷几次? 思路: 跟2008长春那道painter string 差不多.只是 ...

  7. Java抽象类、接口和内部类

    1.抽象方法.抽象类 1)抽象方法: 由abstract修饰 只有方法的定义,没有方法的具体实现(连{}都没有) 由abstract修饰的方法为抽象方法,抽象方法只有方法的定义,没有方法体实现,用一个 ...

  8. Java 基础案例

    1.变量及基本数据类型 案例1:变量声明及赋值 //1.变量的声明 int a; //声明一个整型的变量a int b,c,d; //声明三个整型变量b,c,d //2.变量的初始化 int a = ...

  9. jQuery JavaScript Library v3.2.1

    /*! * jQuery JavaScript Library v3.2.1 * https://jquery.com/ * * Includes Sizzle.js * https://sizzle ...

  10. java HashMap 内存泄漏

    import java.util.HashMap; import java.util.Map; public class HashMapOver { public static void main(S ...