题意:

有一棵\(n(1 \leq n \leq 13)\)个节点的树,节点的标号为\(1 \sim n\),它的根节点是\(1\)。

现在已知它的\(m(0 \leq m < n)\)条边,和\(q(0 \leq q \leq 100)\)个\(LCA\)的关系:\(LCA(a_i, \, b_i)=c_i\)

求满足这些要求的树的个数。

分析:

为了方便,用\(0 \sim n-1\)来表示树的节点。

用\(d(root, \, mask)\)表示以\(root\)为根,选了\(mask\)这些点,而且满足题中所有要求的树的个数。

其中\(mask\)为所选的这些点的二进制表示。

那么所求的答案为\(d(0, \, 2^n-1)\)

边界情况是,树中只有一个点时,\(f(root, \, mask) = 1\)。

状态转移方程:

\(d(root, \, mask) = \sum ( d(newRoot, \, newMask) \times d(root, mask \bigoplus newMask) )\)

\(\bigoplus\)表示异或运算

其中\(d(newRoot, \, newMask)\)是我们枚举的\(d(root, \, mask)\)状态下的一个子树。

\(newRoot\)是该子树的根,\(newMask\)是子树节点的集合。

其他子树和\(root\)合起来的状态数就是\(d(root, mask \bigoplus newMask)\)。

对于同一棵树,我们枚举了一次它的第一棵子树,接着又枚举了它第二棵子树,这样会有重复计算。

所以我们规定一个特殊点,每次只枚举这个特殊点所在子树的集合。

我们可以规定这个特殊点就是\(mask\)中除\(root\)外,编号最小(或最大)的点。

状态转移条件:

只有满足题中的限制,状态才能转移,所以我们要去掉转移时不符合要求的情况:

  1. 对于题目中已经给出的边\((u, v) , \, u \neq root, \, v \neq root\),如果一个点在\(newMask\)中,而另一个点不在,则不满足要求。
  2. 题中所给的边中与\(root\)相邻的而且在\(newMask\)中的点有两个或更多,也不符合要求,因为\(root\)只能和\(newRoot\)相邻。

    但如果只有一个的话,\(newRoot\)就已经确定下来了,后面就不需要再枚举了。
  3. 对于\(LCA(a, \, b)=c\),如果\(c=root\),而且\(a\)和\(b\)都在\(newMask\)中,也不符合要求。因为\(LCA(a, \, b)\)肯定也在\(newMask\)中。
  4. 对于\(LCA(a, \, b)=c\),如果\(c\)在\(newMask\)中,但\(a\)或\(b\)至少有一个不在,不符合要求。

最后分析(YY)一下官方题解中时间复杂度\(3^n\)是怎么来的。

因为状压以后有一个\(2^n\),然后考虑每次转移:

对于\(bitcount(mask) = k\),他一共有\(2^k\)个子集,这样有\(k\)个元素的集合有\(C_n^k\)个。

所以时间复杂度为\(\sum\limits_{k=1}^{n}(C_n^k \cdot 2^k)=(2+1)^n=3^n\)

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; typedef long long LL; const int maxn = 15;
const int maxs = 10000;
const int maxq = 100 + 10; int n, m, q; LL d[maxn][maxs];
int edge[maxn][maxn];
int a[maxq], b[maxq], c[maxq]; int lowbit(int x) { return x & (-x); } int in(int i, int S) { return ((S >> i) & 1); } LL DP(int u, int S) {
LL& ans = d[u][S];
if(ans != -1) return ans; ans = 0;
int St = S - (1 << u);
int t;
for(t = 0; t < n; t++) if(in(t, St)) break; for(int _S = St; _S; _S = (_S-1)&St) if(in(t, _S)) {
bool flag = true; for(int i = 0; i < n; i++) if(i != u) {
for(int j = 0; j < n; j++) if(j != u) {
if(edge[i][j] && (in(i, _S) ^ in(j, _S))) {
flag = false;
break;
}
}
if(!flag) break;
} if(!flag) continue; int v, cnt = 0;
for(int i = 0; i < n; i++) {
if(edge[u][i] && in(i, _S)) {
cnt++;
v = i;
}
}
if(cnt >= 2) continue; for(int i = 0; i < q; i++) {
if(c[i] == u && in(a[i], _S) && in(b[i], _S)) {
flag = false; break;
}
if(in(c[i], _S) && (!in(a[i], _S) || !in(b[i], _S))) {
flag = false; break;
}
}
if(!flag) continue; if(cnt == 1) {
ans += DP(v, _S) * DP(u, S - _S);
} else {
for(v = 0; v < n; v++) if(in(v, _S))
ans += DP(v, _S) * DP(u, S - _S);
}
}
return ans;
} int main()
{
scanf("%d%d%d", &n, &m, &q);
for(int i = 0; i < m; i++) {
int u, v; scanf("%d%d", &u, &v);
u--; v--;
edge[u][v] = edge[v][u] = 1;
}
for(int i = 0; i < q; i++) {
scanf("%d%d%d", a + i, b + i, c + i);
a[i]--; b[i]--; c[i]--;
} int all = (1 << n) - 1;
memset(d, -1, sizeof(d));
for(int i = 0; i < n; i++) d[i][1 << i] = 1; printf("%lld\n", DP(0, all)); return 0;
}

CodeForces 599E Sandy and Nuts 状压DP的更多相关文章

  1. Codeforces Round #363 LRU(概率 状压DP)

    状压DP: 先不考虑数量k, dp[i]表示状态为i的概率,状态转移方程为dp[i | (1 << j)] += dp[i],最后考虑k, 状态表示中1的数量为k的表示可行解. #incl ...

  2. codeforces 8C. Looking for Order 状压dp

    题目链接 给n个物品的坐标, 和一个包裹的位置, 包裹不能移动. 每次最多可以拿两个物品, 然后将它们放到包里, 求将所有物品放到包里所需走的最小路程. 直接状压dp就好了. #include < ...

  3. Codeforces 429C Guess the Tree(状压DP+贪心)

    吐槽:这道题真心坑...做了一整天,我太蒻了... 题意 构造一棵 $ n $ 个节点的树,要求满足以下条件: 每个非叶子节点至少包含2个儿子: 以节点 $ i $ 为根的子树中必须包含 $ c_i ...

  4. Codeforces 895C Square Subsets(状压DP 或 异或线性基)

    题目链接  Square Subsets 这是白书原题啊 先考虑状压DP的做法 $2$到$70$总共$19$个质数,所以考虑状态压缩. 因为数据范围是$70$,那么我们统计出$2$到$70$的每个数的 ...

  5. 【题解】codeforces 8c Looking for Order 状压dp

    题目描述 Lena喜欢秩序井然的生活.一天,她要去上大学了.突然,她发现整个房间乱糟糟的--她的手提包里的物品都散落在了地上.她想把所有的物品都放回她的手提包.但是,这里有一点问题:她一次最多只能拿两 ...

  6. Codeforces 599E Sandy and Nuts(状压DP)

    题目链接 Sandy and Nuts 题意大概就是给出限制条件求出在该限制条件下树的种数. #include <bits/stdc++.h> using namespace std; # ...

  7. Codeforces 895C Square Subsets:状压dp【组合数结论】

    题目链接:http://codeforces.com/problemset/problem/895/C 题意: 给你n个数a[i].(n <= 10^5, 1 <= a[i] <= ...

  8. codeforces 580D Kefa and Dishes(状压dp)

    题意:给定n个菜,每个菜都有一个价值,给定k个规则,每个规则描述吃菜的顺序:i j w,按照先吃i接着吃j,可以多增加w的价值.问如果吃m个菜,最大价值是多大.其中n<=18 思路:一看n这么小 ...

  9. Codeforces 342D Xenia and Dominoes 状压dp

    码就完事了. #include<bits/stdc++.h> #define LL long long #define fi first #define se second #define ...

随机推荐

  1. .md文件插图片,不建议使用绝对地址。

    一 主要有两种方法,一种绝对地址,一种相对地址. 而百度的话,全都是说绝对地址的. 但是,有很大的弊端啊 orz 二 先说绝对地址 ![image](https://github.com/AngelS ...

  2. Python网络编程中的服务器架构(负载均衡、单线程、多线程和同步、异步等)

    这篇文章主要介绍服务器架构. 网络服务需要面对两个挑战. 第一个问题是核心挑战,要编写出能够正确处理请求并构造合适响应的代码. 第二个挑战是如何将网络代码部署到随系统自动启动的Windows服务或者是 ...

  3. vuex填坑记录

    vuex是需要等待页面加载完成后才会更新的,如果页面点击刷新有用到vuex的地方,那么vuex会保持旧的数据,等刷新完成后vuex的数据才会重置,所以要在页面加载后再调用vuex的数据才是正确的,如果 ...

  4. FloatHelper

    function FloatHelper() { } FloatHelper.prototype.showFloater = function (Target, Title, Action, Acti ...

  5. angular2 基于webpack环境搭建

    目录结构: angular-quickstart |_ ts |_ app.ts |_ index.ts |_ index.html |_ package.json |_ tsconfig.json ...

  6. spring data jpa自定义baseRepository

    在一些特殊时候,我们会设计到对Spring Data JPA中的方法进行重新实现,这将会面临一个问题,如果我们新创建一个实现类.如果这个实现类实现了JpaRepository接口,这样我们不得不实现该 ...

  7. log4cxx安装使用

    log4cxx安装使用 log4cxx现在是apache的一个项目,用来记录日志.看名字就知道,是给c++使用的. 环境(在以下2个环境中进行验证测试): gcc (Ubuntu 4.8.4-2ubu ...

  8. Selenium3+webdriver学习笔记4(css方式元素定位)

    #!/usr/bin/env python# -*- coding:utf-8 -*- from selenium import webdriver import time,os # about:ad ...

  9. HTML视频简介

    此文章复制原来文章,原网址是https://www.html5rocks.com/zh/tutorials/video/basics/#toc-encode 简介 视频标记是 HTML5 功能中备受关 ...

  10. 用python写trojan的过程中遇到的各种问题

    由于之前已经conn, addr = s.accept() 所以改为  conn.recv spyder无法同时运行client 和 server 分别在spyder和anaconda prompt运 ...