这个系列主要也是自己最近在研究大数据方向,所以边研究、开发也边整理相关的资料。网上的资料经常是碎片式的,如果要完整的看完可能需要同时看好几篇文章,所以我希望有兴趣的人能够更轻松和快速地学习相关的知识。我会尽可能用简单的方式去简介一些概念和算法,尽可能让没有工科基础的人也能大致了解。

简单讲解

基于内容的推荐算法是非常常见的推荐引擎算法。

这种算法常用于根据用户的行为历史信息,如评价、分享、点赞等行为并将这些行为整合计算出用户的偏好,再对计算推荐项目与用户偏好的相似度,将最相似的推荐给用户。例如在书籍推荐中,可以根据用户已经看过或者评分的书籍的一些共性(比如作者、分类、标签)再推荐给用户相似度高的书籍。

基于内容推荐可以通过两种方式,一个是像上面所说通过用户的行为进行个性化推荐,但是上面的推荐方式很依赖用户的数据、不利于没有用户数据情况下的冷启动。一般适合商品不多、用户有特殊兴趣的情况。

第二种就是根据事物的相关性,这种方式是通过比较事物之间共有属性的相似度来进行推荐,例如如果A用户喜欢Dota2,Dota2是属于竞技类网游,那么A用户就有可能喜欢英雄联盟。

这种方式的好处就是可以不依赖用户的行为,但是要求事物的内容是准确和完善的并且是没有歧义的,不过也可以通过手动输入标签的方式来解决这个问题。

相关算法

1.基于关键词的空间向量模型

关键词一般通过TF-IDF来进行提取,TF-IDF是一种常用的加权计算方法,它是基于统计学的方法,一般用来评估一个词在一段话或一篇文章中的重要性。

TF-IDF对区别文档最有意义的词语应该是那些在文档中出现频率高,而在整个文档集合的其他文档中出现频率少的词语,所以如果特征空间坐标系取TF词频作为测度,就可以体现同类文本的特点。

另外考虑到单词区别不同类别的能力,TF-IDF法认为一个单词出现的文本频数越小,它区别不同类别文本的能力就越大。因此引入了逆文本频度IDF的概念,以TF和IDF的乘积作为特征空间坐标系的取值测度,并用它完成对权值TF的调整,调整权值的目的在于突出重要单词,抑制次要单词。

有很多不同的数学公式可以用来计算TF-IDF。

如果某个词或短语在一篇文章中出现的频率TF(词频)高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。TFIDF实际上是:TF * IDF,TF词频(Term Frequency),IDF反文档频率(Inverse Document Frequency)。TF表示词条在文档d中出现的频率。IDF的主要思想是:如果包含词条t的文档越少,也就是n越小,IDF越大,则说明词条t具有很好的类别区分能力。如果某一类文档C中包含词条t的文档数为m,而其它类包含t的文档总数为k,显然所有包含t的文档数n=m+k,当m大的时候,n也大,按照IDF公式得到的IDF的值会小,就说明该词条t类别区分能力不强。

词频 (TF) 是一词语出现的次数除以该文件的总词语数。假如一篇文件的总词语数是100个,而词语“母牛”出现了3次,那么“母牛”一词在该文件中的词频就是 0.03 (3/100)。一个计算文件频率 (DF) 的方法是测定有多少份文件出现过“母牛”一词,然后除以文件集里包含的文件总数。所以,如果“母牛”一词在1,000份文件出现过,而文件总数是 10,000,000份的话,其文件频率就是 0.0001 (1000/10,000,000)。最后,TF-IDF分数就可以由计算词频除以文件频率而得到。以上面的例子来说,“母牛”一词在该文件集的TF- IDF分数会是 300 (0.03/0.0001)。这条公式的另一个形式是将文件频率取对数。

向量空间模型是通过进行特征选择计算,通过加权公式将文本转化为数值的一种形式。这样就可以将向量空间模型通过计算得到相似度。

我们可以将用户的喜好以文档描述并转换成向量模型,对商品也是这么处理,然后再通过计算商品文档和用户偏好文档的余弦相似度。

有关余弦相似度和TF-IDF详细可以等下一篇文章。

2.Rocchoi算法

Rocchio算法,是一种高效的分类算法,广泛地被应用到文本分类,查询扩展等领域。它通过构造原型向量的方法得到最优解。

Rocchio算法应该算是人们思考文本分类问题时最先能想到,也最符合直觉的解决方法。基本的思路是把一个类别里的样本文档各项取个平均值(例如把所有 “体育”类文档中词汇“篮球”出现的次数取个平均值,再把“裁判”取个平均值,依次做下去),可以得到一个新的向量,形象的称之为“质心”,质心就成了这 个类别最具代表性的向量表示。再有新文档需要判断的时候,比较新文档和质心有多么相像(八股点说,判断他们之间的距离)就可以确定新文档属不属于这个类。

通过上述的这两种算法就可以判断内容之间是否相似从而进行推荐。

【T-BABY 夜谈大数据】基于内容的推荐算法的更多相关文章

  1. 新闻推荐系统:基于内容的推荐算法(Recommender System:Content-based Recommendation)

    https://blog.csdn.net/qq_32690999/article/details/77434381 因为开发了一个新闻推荐系统的模块,在推荐算法这一块涉及到了基于内容的推荐算法(Co ...

  2. 大数据算法->推荐系统常用算法之基于内容的推荐系统算法

    港真,自己一直非常希望做算法工程师,所以自己现在开始对现在常用的大数据算法进行不断地学习,今天了解到的算法,就是我们生活中无处不在的推荐系统算法. 其实,向别人推荐商品是一个很常见的现象,比如我用了一 ...

  3. Recommender Systems基于内容的推荐

    基于内容的推荐的基本推荐思路是:用户喜欢幻想小说,这本书是幻想小说,则用户有可能喜欢这本小说 两方面要求:(1)知道用户的喜好:(2)知道物品的属性 基于内容的推荐相比协同过滤方法(个人观点):协同过 ...

  4. 大数据学习之BigData常用算法和数据结构

    大数据学习之BigData常用算法和数据结构 1.Bloom Filter     由一个很长的二进制向量和一系列hash函数组成     优点:可以减少IO操作,省空间     缺点:不支持删除,有 ...

  5. elasticsearch使用More like this实现基于内容的推荐

    基于内容的推荐通常是给定一篇文档信息,然后给用户推荐与该文档相识的文档.Lucene的api中有实现查询文章相似度的接口,叫MoreLikeThis.Elasticsearch封装了该接口,通过Ela ...

  6. 推荐系统第5周--- 基于内容的推荐,隐语义模型LFM

    基于内容的推荐

  7. ElasticSearch java API-使用More like this实现基于内容的推荐

    ElasticSearch java API-使用More like this实现基于内容的推荐 基于内容的推荐通常是给定一篇文档信息,然后给用户推荐与该文档相识的文档.Lucene的api中有实现查 ...

  8. GIS+=地理信息+行业+大数据——基于云环境流处理平台下的实时交通创新型app

    应用程序已经是近代的一个最重要的IT创新.应用程序是连接用户和数据之间的桥梁,提供即时訪问信息是最方便且呈现的方式也是easy理解的和令人惬意的. 然而,app开发人员.尤其是后端平台能力,一直在努力 ...

  9. 贾扬清谈大数据&AI发展的新挑战和新机遇

    摘要:2019云栖大会大数据&AI专场,阿里巴巴高级研究员贾扬清为我们带来<大数据AI发展的新机遇和新挑战>的分享.本文主要从人工智能的概念开始讲起,谈及了深度学习的发展和模型训练 ...

随机推荐

  1. linux下安装https证书

    https://www.aliyun.com/jiaocheng/165422.html

  2. interceptors

    <mvc:interceptors> <mvc:interceptor> <mvc:mapping path="/**"/> <bean ...

  3. poj1065 Wooden Sticks[LIS or 贪心]

    地址戳这.N根木棍待处理,每根有个长x宽y,处理第一根花费1代价,之后当处理到的后一根比前一根长或者宽要大时都要重新花费1代价,否则不花费.求最小花费代价.多组数据,N<=5000 本来是奔着贪 ...

  4. 「LuoguP1144」 最短路计数(dijkstra

    题目描述 给出一个NN个顶点MM条边的无向无权图,顶点编号为1-N1−N.问从顶点11开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 第一行包含22个正整数N,MN,M,为图的顶点数与边 ...

  5. ACM学习历程—HDU4956 Poor Hanamichi(模拟)

    Poor Hanamichi Problem Description Hanamichi is taking part in a programming contest, and he is assi ...

  6. ACM学习历程——POJ1260 Pearls(动态规划)

    Description In Pearlania everybody is fond of pearls. One company, called The Royal Pearl, produces ...

  7. 国标28181sip开源库介绍(陆续补充完备)

    (1)osip一个基于 osip 库的 UAC 和 UAS 的代码整理http://blog.csdn.net/aflyeaglenku/article/details/51601270(2)pjsi ...

  8. python管理Windows服务

    上一篇介绍了pywin32模块,它的win32service子模块提供了对服务管理API的包装,相关API如下: ChangeServiceConfig ChangeServiceConfig2 Cl ...

  9. Oracle数据库获取一行记录中某几个字段的最大值/最小值函数

    在数据库的开发过程中,我们可能会遇到这样的需求,获取一行记录中某几个字段的最大值或者是最小值,oracle给我们提供了解决这种需求的函数,如下所示:   greatest(col1, col2, co ...

  10. docker添加阿里云镜像加速器

    .docker添加阿里云镜像加速器 https://blog.csdn.net/chenjin_chenjin/article/details/86674521 .配置阿里云加速器 阿里云会根据账号生 ...