【BZOJ2818】Gcd(莫比乌斯反演)

题面

Description

给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的

数对(x,y)有多少对.

Input

一个整数N

Output

如题

Sample Input

4

Sample Output

4

HINT

对于样例(2,2),(2,4),(3,3),(4,2)

1<=N<=10^7

题解

题目要求的:

\[\sum_{i=1}^n\sum_{j=1}^n[gcd(i,j)\_is\_prime]
\]

把因数提出来

\[\sum_{d=1}^{n}[d\_is\_prime]\sum_{i=1}^{n/d}\sum_{j=1}^{n/d}[gcd(i,j)==1]
\]

后面那个不说了

很显然的莫比乌斯反演

参考这道题目,一模一样的东西

如果不考虑\(d\_is\_prime\)这个东西

很显然的数论分块

加上了这个限制

就再预处理一个素数个数的前缀和就行了

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 10000000
#define ll long long
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n,m;
bool zs[MAX+1000];
ll pri[MAX+1000],tot,smu[MAX+1000],spr[MAX+1000];
long long ans=0;
void pre()
{
zs[1]=true;smu[1]=1;
for(int i=2;i<=n;++i)
{
if(!zs[i])pri[++tot]=i,smu[i]=-1;
for(int j=1;j<=tot&&i*pri[j]<=n;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j]==0){smu[i*pri[j]]=0;break;}
else smu[i*pri[j]]=-smu[i];
}
}
for(int i=1;i<=n;++i)smu[i]+=smu[i-1];
for(int i=1;i<=n;++i)spr[i]=spr[i-1]+(!zs[i]?1:0);
}
ll Solve(int a)
{
int i=1,j;
long long ret=0;
while(i<=a)
{
j=a/(a/i);
ret+=1ll*(smu[j]-smu[i-1])*(a/i)*(a/i);
i=j+1;
}
return ret;
}
int main()
{
n=read();
int i=1,j;
pre();
while(i<=n)
{
j=n/(n/i);
ans+=(spr[j]-spr[i-1])*Solve(n/i);
i=j+1;
}
printf("%lld\n",ans);
return 0;
}

【BZOJ2818】Gcd(莫比乌斯反演)的更多相关文章

  1. BZOJ2818: Gcd 莫比乌斯反演

    分析:筛素数,然后枚举,莫比乌斯反演,然后关键就是分块加速(分块加速在上一篇文章) #include<cstdio> #include<cstring> #include< ...

  2. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  3. 【BZOJ2818】Gcd [莫比乌斯反演]

    Gcd Time Limit: 10 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 给定整数N,求1<=x,y&l ...

  4. HDU1695 GCD(莫比乌斯反演)

    传送门 看了1个多小时,终于懂了一点了 题目大意:给n,m,k.求gcd(x,y) = k(1<=x<=n, 1<=y<=m)的个数 思路:令F(i)表示i|gcd(x,y)的 ...

  5. hdu 1695 GCD 莫比乌斯反演入门

    GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...

  6. 洛谷P2257 YY的GCD 莫比乌斯反演

    原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...

  7. HYSBZ - 2818 Gcd (莫比乌斯反演)

    莫比乌斯反演的入门题,设 \(F(x): gcd(i,j)\%x=0\) 的对数,\(f(x): gcd(i,j)=x\)的对数. 易知\[F(p) = \lfloor \frac{n}{p} \rf ...

  8. Luogu P2257 YY的GCD 莫比乌斯反演

    第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...

  9. BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MB Submit: 2534  Solved: 1129 [Submit][Status][Discu ...

  10. BZOJ 2820 luogu 2257 yy的gcd (莫比乌斯反演)

    题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便 ...

随机推荐

  1. java json字符串 获取value

    java中可以导入有关json的jar包,但是此jar包又得依赖其他的jar包 ,所以需要导入的包如下: 可在这里下载相关jar包,CSDN下载啥都要钱  讨厌死了  还是这个链接好---云盘 htt ...

  2. 【转】APACHE RewriteEngine用途

    首先要学会怎么设置 httpd.conf 的设置, 什么 ALL 就不用用说了 要看你的 httpd.conf 是否设置正确了,很简单,只要你在 .htaccess  里随便录入一些 比如 adbas ...

  3. Netty的常用概念

    我们先来看一段代码: // Configure the server. EventLoopGroup bossGroup = new NioEventLoopGroup(1); EventLoopGr ...

  4. MongoDB安装篇-Win7 X64

    介绍 MongoDB是一个基于分布式文件存储的数据库.由C++语言编写.旨在为WEB应用提供可扩展的高性能数据存储解决方案. MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库 ...

  5. css 图片增加模糊效果

    img{ -webkit-filter: blur(5px); -moz-filter: blur(5px); -ms-filter: blur(5px); filter: blur(5px); }

  6. EF的Join()和Include()差异性教程

    在EF中表连接常用的有Join()和Include(),两者都可以实现两张表的连接,但又有所不同. 1.Join(),两表不必含有外键关系,需要代码手动指定连接外键相等(具有可拓展性,除了值相等,还能 ...

  7. Action里面的自带的字段的含义

  8. MySQL取得某一范围随机数

    ①直接取值 若要在i ≤ R ≤ j 这个范围得到一个随机整数R ,需要用到表达式 FLOOR(i + RAND() * (j – i + 1)). 例如, 若要在7 到 12 的范围(包括7和12) ...

  9. 计蒜客 取数游戏 博弈+dp

    题目链接 取数游戏 思路:dp(x, y)表示先手在区间[x, y]能取得的最大分数.当先手取完,就轮到后手去,后手一定会选择当前能令他得到最大分数的策略,其实当先手在[x, y]区间两端取走一个数, ...

  10. nyoj44 子串和 线性DP

    线性DP经典题. dp[i]表示以i为结尾最大连续和,状态转移方程dp[i] = max (a[i] , dp[i - 1] + a[i]) AC代码: #include<cstdio> ...