【BZOJ2818】Gcd(莫比乌斯反演)
【BZOJ2818】Gcd(莫比乌斯反演)
题面
Description
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.
Input
一个整数N
Output
如题
Sample Input
4
Sample Output
4
HINT
对于样例(2,2),(2,4),(3,3),(4,2)
1<=N<=10^7
题解
题目要求的:
\]
把因数提出来
\]
后面那个不说了
很显然的莫比乌斯反演
参考这道题目,一模一样的东西
如果不考虑\(d\_is\_prime\)这个东西
很显然的数论分块
加上了这个限制
就再预处理一个素数个数的前缀和就行了
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 10000000
#define ll long long
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n,m;
bool zs[MAX+1000];
ll pri[MAX+1000],tot,smu[MAX+1000],spr[MAX+1000];
long long ans=0;
void pre()
{
zs[1]=true;smu[1]=1;
for(int i=2;i<=n;++i)
{
if(!zs[i])pri[++tot]=i,smu[i]=-1;
for(int j=1;j<=tot&&i*pri[j]<=n;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j]==0){smu[i*pri[j]]=0;break;}
else smu[i*pri[j]]=-smu[i];
}
}
for(int i=1;i<=n;++i)smu[i]+=smu[i-1];
for(int i=1;i<=n;++i)spr[i]=spr[i-1]+(!zs[i]?1:0);
}
ll Solve(int a)
{
int i=1,j;
long long ret=0;
while(i<=a)
{
j=a/(a/i);
ret+=1ll*(smu[j]-smu[i-1])*(a/i)*(a/i);
i=j+1;
}
return ret;
}
int main()
{
n=read();
int i=1,j;
pre();
while(i<=n)
{
j=n/(n/i);
ans+=(spr[j]-spr[i-1])*Solve(n/i);
i=j+1;
}
printf("%lld\n",ans);
return 0;
}
【BZOJ2818】Gcd(莫比乌斯反演)的更多相关文章
- BZOJ2818: Gcd 莫比乌斯反演
分析:筛素数,然后枚举,莫比乌斯反演,然后关键就是分块加速(分块加速在上一篇文章) #include<cstdio> #include<cstring> #include< ...
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- 【BZOJ2818】Gcd [莫比乌斯反演]
Gcd Time Limit: 10 Sec Memory Limit: 256 MB[Submit][Status][Discuss] Description 给定整数N,求1<=x,y&l ...
- HDU1695 GCD(莫比乌斯反演)
传送门 看了1个多小时,终于懂了一点了 题目大意:给n,m,k.求gcd(x,y) = k(1<=x<=n, 1<=y<=m)的个数 思路:令F(i)表示i|gcd(x,y)的 ...
- hdu 1695 GCD 莫比乌斯反演入门
GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...
- 洛谷P2257 YY的GCD 莫比乌斯反演
原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...
- HYSBZ - 2818 Gcd (莫比乌斯反演)
莫比乌斯反演的入门题,设 \(F(x): gcd(i,j)\%x=0\) 的对数,\(f(x): gcd(i,j)=x\)的对数. 易知\[F(p) = \lfloor \frac{n}{p} \rf ...
- Luogu P2257 YY的GCD 莫比乌斯反演
第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...
- BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Submit: 2534 Solved: 1129 [Submit][Status][Discu ...
- BZOJ 2820 luogu 2257 yy的gcd (莫比乌斯反演)
题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便 ...
随机推荐
- react-native WebView 返回处理 (非回调方法可解决)
1.前言 项目中有些页面内容是变更比较频繁的,这些页面我们会考虑用网页来解决. 在RN项目中提供一个公用的Web页,如果是网页内容,就跳转到这个界面展示. 此时会有一个问题是,网页会有一级页面,二级页 ...
- 简单的led驱动程序设计
基于ok6410: led驱动程序: vim led.c #include<linux/kernel.h>#include<linux/module.h>#include< ...
- linear-grident的属性和使用以及对颜色后面参数(百分比)的理解
linear-grident的属性和使用 css3新增Gradient属性,用来增加渐变的效果,渐变分为线性渐变 linear-grident 和 径向渐变 radial-grident,这篇文章 ...
- [APIO2015]雅加达的摩天楼
Description 印尼首都雅加达市有 N 座摩天楼,它们排列成一条直线,我们从左到右依次将它们编号为 0 到 N−1.除了这 N 座摩天楼外,雅加达市没有其他摩天楼. 有 M 只叫做 " ...
- 【剑指offer28:字符串的排列】【java】
题目:输入一个字符串,按字典序打印出该字符串中字符的所有排列.例如输入字符串abc,则打印出由字符a,b,c所能排列出来的所有字符串abc,acb,bac,bca,cab和cba. import ja ...
- LIMS系统仪器数据采集-使用xpdf解析pdf内容
不同语言解析PDF内容都有各自的库,比如Java的pdfbox,.net的itextsharp. c#解析PDF文本,关键代码可参考: http://www.cnblogs.com/mahongbia ...
- Windows下如何硬盘安装Ubuntu
一般来说,折腾双系统是每一位程序猿都有过的经历,如何在windows下安装双系统ubuntu呢?今天来给大家介绍一下如何直接在windows硬盘安装ubuntu,而不需要使用U盘或者光盘,或外置硬盘. ...
- 在Angular中利用trackBy来提升性能
在Angular的模板中遍历一个集合(collection)的时候你会这样写: <ul> <li *ngFor="let item of collection"& ...
- 阿里云ECS重置磁盘到SSH登录
1.登录阿里云(www.aliyun.com) -- > 控制台: 2.点击左边的"云服务器ECS": 3.点击上面"第二步",进入页面之后,点击&quo ...
- Ubuntu17.10下启动Rancher
1.安装Docker: 获取最新的docker安装包 wget -qO- https://get.docker.com/ | sh 2.启动docker后台服务: service docker sta ...