Celery
在程序的运行过程中,我们经常会碰到一些耗时耗资源的操作,为了避免它们阻塞主程序的运行,我们经常会采用多线程或异步任务。比如,在 Web 开发中,对新用户的注册,我们通常会给他发一封激活邮件,而发邮件是个 IO 阻塞式任务,如果直接把它放到应用当中,就需要等邮件发出去之后才能进行下一步操作,此时用户只能等待再等待。更好的方式是在业务逻辑中触发一个发邮件的异步任务,而主程序可以继续往下运行。
Celery 是一个强大的分布式任务队列,它可以让任务的执行完全脱离主程序,甚至可以被分配到其他主机上运行。我们通常使用它来实现异步任务(async task)和定时任务(crontab)。它的架构组成如下图:

可以看到,Celery 主要包含以下几个模块:
任务模块
包含异步任务和定时任务。其中,异步任务通常在业务逻辑中被触发并发往任务队列,而定时任务由 Celery Beat 进程周期性地将任务发往任务队列。
消息中间件 Broker
Broker,即为任务调度队列,接收任务生产者发来的消息(即任务),将任务存入队列。Celery 本身不提供队列服务,官方推荐使用 RabbitMQ 和 Redis 等。
任务执行单元 Worker
Worker 是执行任务的处理单元,它实时监控消息队列,获取队列中调度的任务,并执行它。
任务结果存储 Backend
Backend 用于存储任务的执行结果,以供查询。同消息中间件一样,存储也可使用 RabbitMQ, Redis 和 MongoDB 等。
异步任务
使用 Celery 实现异步任务主要包含三个步骤:
- 创建一个 Celery 实例
- 启动 Celery Worker
- 应用程序调用异步任务
$ pip install celery
# 安装好redis
创建tasks.py
import time
from celery import Celery broker = 'redis://127.0.0.1:6379'
backend = 'redis://127.0.0.1:6379/0'
# 密码 redis://:password@127.0.0.1:6379 app = Celery('my_task', broker=broker, backend=backend) @app.task
def add(x, y):
time.sleep(5) # 模拟耗时操作
return x + y
启动celery worker
在当前路径下执行
$ celery worker -A tasks --loglevel=info
调用任务
在当前目录下打开控制台
>>> from tasks import add >>> add.delay(2,3)
在上面,我们从 tasks.py 文件中导入了 add 任务对象,然后使用 delay() 方法将任务发送到消息中间件(Broker),Celery Worker 进程监控到该任务后,就会进行执行。
另外,我们如果想获取执行后的结果,可以这样做:
>>> result = add.delay(2,5)
>>> result.ready()
>>> False
>>> result.ready()
>>> True
>>> result.get()
>>> 7
使用配置
在上面的例子中,我们直接把 Broker 和 Backend 的配置写在了程序当中,更好的做法是将配置项统一写入到一个配置文件中,通常我们将该文件命名为 celeryconfig.py。Celery 的配置比较多,可以在官方文档查询每个配置项的含义。
celery_demo # 项目根目录
├── celery_app # 存放 celery 相关文件
│ ├── __init__.py
│ ├── celeryconfig.py # 配置文件
│ ├── task1.py # 任务文件 1
│ └── task2.py # 任务文件 2
└── client.py # 应用程序
__init__.py 代码如下:
from celery import Celery
app = Celery('demo') # 创建 Celery 实例
app.config_from_object('celery_app.celeryconfig') # 通过 Celery 实例加载配置模块
celeryconfig.py 代码如下:
BROKER_URL = 'redis://127.0.0.1:6379' # 指定 Broker
CELERY_RESULT_BACKEND = 'redis://127.0.0.1:6379/0' # 指定 Backend CELERY_TIMEZONE='Asia/Shanghai' # 指定时区,默认是 UTC
# CELERY_TIMEZONE='UTC' CELERY_IMPORTS = ( # 指定导入的任务模块
'celery_app.task1',
'celery_app.task2'
)
task1.py 代码如下:
import time
from celery_app import app @app.task
def add(x, y):
time.sleep(2)
return x + y
task2.py 代码如下:
import time
from celery_app import app @app.task
def multiply(x, y):
time.sleep(2)
return x * y
client.py 代码如下
from celery_app import task1
from celery_app import task2 task1.add.apply_async(args=[2, 8]) # 也可用 task1.add.delay(2, 8)
task2.multiply.apply_async(args=[3, 7]) # 也可用 task2.multiply.delay(3, 7) print('hello world')
现在,让我们启动 Celery Worker 进程,在项目的根目录下执行下面命令
$ celery -A celery_app worker --loglevel=info
接着,运行 $ python client.py
定时任务
Celery 除了可以执行异步任务,也支持执行周期性任务(Periodic Tasks),或者说定时任务。Celery Beat 进程通过读取配置文件的内容,周期性地将定时任务发往任务队列。
让我们看看例子,项目结构如下:
celery_demo # 项目根目录
├── celery_app # 存放 celery 相关文件
├── __init__.py
├── celeryconfig.py # 配置文件
├── task1.py # 任务文件
└── task2.py # 任务文件
__init__.py 代码如下:
from celery import Celery
app = Celery('demo')
app.config_from_object('celery_app.celeryconfig')
celeryconfig.py 代码如下:
from datetime import timedelta
from celery.schedules import crontab # Broker and Backend
BROKER_URL = 'redis://127.0.0.1:6379'
CELERY_RESULT_BACKEND = 'redis://127.0.0.1:6379/0' # Timezone
CELERY_TIMEZONE='Asia/Shanghai' # 指定时区,不指定默认为 'UTC'
# CELERY_TIMEZONE='UTC' # import
CELERY_IMPORTS = (
'celery_app.task1',
'celery_app.task2'
) # schedules
CELERYBEAT_SCHEDULE = {
'add-every-30-seconds': {
'task': 'celery_app.task1.add',
'schedule': timedelta(seconds=30), # 每 30 秒执行一次
'args': (5, 8) # 任务函数参数
},
'multiply-at-some-time': {
'task': 'celery_app.task2.multiply',
'schedule': crontab(hour=9, minute=50), # 每天早上 9 点 50 分执行一次
'args': (3, 7) # 任务函数参数
}
}
task1.py 代码如下:
import time
from celery_app import app @app.task
def add(x, y):
time.sleep(2)
return x + y
task2.py 代码如下:
import time
from celery_app import app @app.task
def multiply(x, y):
time.sleep(2)
return x * y
启动 Celery Worker 进程,在项目的根目录下执行下面命令:
$ celery -A celery_app worker --loglevel=info
接着,启动 Celery Beat 进程,定时将任务发送到 Broker,在项目根目录下执行下面命令:
$ celery beat -A celery_app
在 Worker 窗口我们可以看到,任务 task1 每 30 秒执行一次,而 task2 每天早上 9 点 50 分执行一次。
我们用两个命令启动了 Worker 进程和 Beat 进程,我们也可以将它们放在一个命令中:
$ celery -B -A celery_app worker --loglevel=info
Celery的更多相关文章
- 异步任务队列Celery在Django中的使用
前段时间在Django Web平台开发中,碰到一些请求执行的任务时间较长(几分钟),为了加快用户的响应时间,因此决定采用异步任务的方式在后台执行这些任务.在同事的指引下接触了Celery这个异步任务队 ...
- celery使用的一些小坑和技巧(非从无到有的过程)
纯粹是记录一下自己在刚开始使用的时候遇到的一些坑,以及自己是怎样通过配合redis来解决问题的.文章分为三个部分,一是怎样跑起来,并且怎样监控相关的队列和任务:二是遇到的几个坑:三是给一些自己配合re ...
- tornado+sqlalchemy+celery,数据库连接消耗在哪里
随着公司业务的发展,网站的日活数也逐渐增多,以前只需要考虑将所需要的功能实现就行了,当日活越来越大的时候,就需要考虑对服务器的资源使用消耗情况有一个清楚的认知. 最近老是发现数据库的连接数如果 ...
- celery 框架
转自:http://www.cnblogs.com/forward-wang/p/5970806.html 生产者消费者模式 在实际的软件开发过程中,经常会碰到如下场景:某个模块负责产生数据,这些数据 ...
- celery使用方法
1.celery4.0以上不支持windows,用pip安装celery 2.启动redis-server.exe服务 3.编辑运行celery_blog2.py !/usr/bin/python c ...
- Celery的实践指南
http://www.cnblogs.com/ToDoToTry/p/5453149.html Celery的实践指南 Celery的实践指南 celery原理: celery实际上是实现了一个典 ...
- Using Celery with Djang
This document describes the current stable version of Celery (4.0). For development docs, go here. F ...
- centos6u3 安装 celery 总结
耗时大概6小时. 执行 pip install celery 之后, 在 mac 上 celery 可以正常运行, 在 centos 6u3 上报错如下: Traceback (most recent ...
- celery 异步任务小记
这里有一篇写的不错的:http://www.jianshu.com/p/1840035cb510 自己的"格式化"后的内容备忘下: 我们总在说c10k的问题, 也做了不少优化, 然 ...
- Celery 框架学习笔记
在学习Celery之前,我先简单的去了解了一下什么是生产者消费者模式. 生产者消费者模式 在实际的软件开发过程中,经常会碰到如下场景:某个模块负责产生数据,这些数据由另一个模块来负责处理(此处的模块是 ...
随机推荐
- 时空地图TimeGIS.com生成正交曲线网格
数值模拟中对数学物理方程的求解过程中经常需要生成网格,这里提供了一种方便的方法,只需要简单地勾画出区域的轮廓, 就可以生成相应的正交曲线网格,详情请访问 www.TimeGIS.com
- vue input输入框长度限制
今天在开发登录页时,需要设置登录输入框的长度,输入类型为number <input type="number" maxlength="11" placeh ...
- 搭建Linux虚拟服务器
1.搭建Linux虚拟机环境安装VMware Workstation 14下载地址:https://www.cr173.com/soft/68480.html密钥:FF31K-AHZD1-H8ETZ- ...
- Hive动态分区
1.开启支持动态分区 set hive.exec.dynamic.partition=true; --默认为false set hive.exec.dynamic.partition.mode=nos ...
- 简单的纯js三级联动
参考这个 日尼禾尔 二级联动 写了三级联动 <!DOCTYPE html> <html> <head> <meta charset="UTF-8 ...
- Python3 字典 items() 方法
描述 Python 字典 items() 方法以列表返回可遍历的(键, 值) 元组数组. 语法 items()方法语法: dict.items() 参数 NA. 返回值 返回可遍历的(键, 值) 元组 ...
- 借书证信息管理系统,C语言实现
自己实现的如有缺漏欢迎提出 /* 原创文章 转载请附上原链接: https://www.cnblogs.com/jiujue/p/10325628.html */ 设计内容: 设计一个排序和查找系 ...
- Vue的安装及使用快速入门
一.安装vue 1.安装node.js,安装完node.js之后,npm也会自动安装 查询是否安装成功的命令: node -v npm -v 2.全局安装脚手架工具vue-cli,命令如下: npm ...
- 功能测试话题分享-0323 Bug
- python day09
内存空间管理 1.空间引用计数,垃圾回收机制的依据 --变量的值被引用,该值的引用计数加1 --变量解除绑定,该值的引用计数减1 --如果该值的引用计数为0,就会被自动回收 2.引用计数会出现的循环问 ...