2142: 礼物

Time Limit: 10 Sec  Memory Limit: 259 MB
Submit: 1294  Solved: 534
[Submit][Status][Discuss]

Description

一年一度的圣诞节快要来到了。每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物。不同的人物在小E心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多。小E从商店中购买了n件礼物,打算送给m个人,其中送给第i个人礼物数量为wi。请你帮忙计算出送礼物的方案数(两个方案被认为是不同的,当且仅当存在某个人在这两种方案中收到的礼物不同)。由于方案数可能会很大,你只需要输出模P后的结果。

Input

输入的第一行包含一个正整数P,表示模;第二行包含两个整整数n和m,分别表示小E从商店购买的礼物数和接受礼物的人数;以下m行每行仅包含一个正整数wi,表示小E要送给第i个人的礼物数量。

Output

若不存在可行方案,则输出“Impossible”,否则输出一个整数,表示模P后的方案数。

对于100%的数据,1≤n≤109,1≤m≤5,1≤pi^ci≤10^5。


会Lucas定理的P不是质数版本后这就是模板题啊

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=;
inline ll read(){
char c=getchar();ll x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
ll MOD,n,m,w[N];
ll Pow(ll a,ll b,ll P){
ll ans=;
for(;b;b>>=,a=a*a%P)
if(b&) ans=ans*a%P;
return ans;
}
void exgcd(ll a,ll b,ll &d,ll &x,ll &y){
if(b==) d=a,x=,y=;
else exgcd(b,a%b,d,y,x),y-=(a/b)*x;
}
ll Inv(ll a,ll n){
ll d,x,y;
exgcd(a,n,d,x,y);
return d==?(x+n)%n:-;
}
ll Fac(ll n,ll p,ll pr){
if(n==) return ;
ll re=;
for(ll i=;i<=pr;i++) if(i%p) re=re*i%pr;
re=Pow(re,n/pr,pr);
ll r=n%pr;
for(ll i=;i<=r;i++) if(i%p) re=re*i%pr;
return re*Fac(n/p,p,pr)%pr; }
ll C(ll n,ll m,ll p,ll pr){
if(n<m) return ;
ll x=Fac(n,p,pr),y=Fac(m,p,pr),z=Fac(n-m,p,pr);
ll c=;
for(int i=n;i;i/=p) c+=i/p;
for(int i=m;i;i/=p) c-=i/p;
for(int i=n-m;i;i/=p) c-=i/p;
ll a=x*Inv(y,pr)%pr*Inv(z,pr)%pr*Pow(p,c,pr)%pr;
return a*(MOD/pr)%MOD*Inv(MOD/pr,pr)%MOD;
}
ll Lucas(ll n,ll m){
ll x=MOD,re=;
for(ll i=;i<=x;i++) if(x%i==){
ll pr=;
while(x%i==) x/=i,pr*=i;
re=(re+C(n,m,i,pr))%MOD;
}
return re;
}
int main(){
//freopen("in","r",stdin);
MOD=read();n=read();m=read();
ll sum=;
for(int i=;i<=m;i++) w[i]=read(),sum+=w[i];
if(sum>n){puts("Impossible");return ;}
ll ans=;
for(int i=;i<=m;i++) ans=ans*Lucas(n,w[i])%MOD,n-=w[i];//,printf("hi %d %d\n",ans,n);
printf("%lld",ans);
}

BZOJ 2142: 礼物 [Lucas定理]的更多相关文章

  1. BZOJ - 2142 礼物 (扩展Lucas定理)

    扩展Lucas定理模板题(貌似这玩意也只能出模板题了吧~~本菜鸡见识鄙薄,有待指正) 原理: https://blog.csdn.net/hqddm1253679098/article/details ...

  2. BZOJ 2142 礼物 组合数学 CRT 中国剩余定理

    2142: 礼物 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1450  Solved: 593[Submit][Status][Discuss] ...

  3. ZOJ 3557 & BZOJ 2982 combination[Lucas定理]

    How Many Sets II Time Limit: 2 Seconds      Memory Limit: 65536 KB Given a set S = {1, 2, ..., n}, n ...

  4. 【题解】国家集训队礼物(Lucas定理)

    [国家集训队]礼物(扩展Lucas定理) 传送门可以直接戳标题 172.40.23.20 24 .1 答案就是一个式子: \[ {n\choose \Sigma_{i=1}^m w}\times\pr ...

  5. BZOJ 2142 礼物 数论

    这道题是求组合数终极版. C(n,m) mod P n>=1e9 m>=1e9 P>=1e9且为合数且piqi<=1e5 拓展lucas定理. 实际上就是一点数论小知识的应用. ...

  6. BZOJ 4403 2982 Lucas定理模板

    思路: Lucas定理的模板题.. 4403 //By SiriusRen #include <cstdio> using namespace std; ; #define int lon ...

  7. bzoj 2142 礼物——扩展lucas模板

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2142 没给P的范围,但说 pi ^ ci<=1e5,一看就是扩展lucas. 学习材料 ...

  8. BZOJ.2142.礼物(扩展Lucas)

    题目链接 答案就是C(n,m1) * C(n-m1,m2) * C(n-m1-m2,m3)...(mod p) 使用扩展Lucas求解. 一个很简单的优化就是把pi,pi^ki次方存下来,因为每次分解 ...

  9. 【刷题】BZOJ 2142 礼物

    Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店 ...

随机推荐

  1. android仿微信红包动画、Kotlin综合应用、Xposed模块、炫酷下拉视觉、UC浏览器滑动动画等源码

    Android精选源码 仿微信打开红包旋转动画 使用Kotlin编写的Android应用,内容你想象不到 Android手机上的免Root Android系统日志Viewer 一个能让微信 Mater ...

  2. sublime text 3如何安装插件

    原博客地址:http://blog.csdn.net/weixin_40682842/article/details/78727266 我自己的部分操作如下: 学习Sublime Text扩展插件的安 ...

  3. 1.移植3.4内核-分析内核启动过程,重新分区,烧写jffs2文件系统

    1.在上章-移植uboot里.我们来分析下uboot是如何进入到内核的 首先,uboot启动内核是通过bootcmd命令行实现的,在我们之前移植的bootcmd命令行如下所示: bootcmd=nan ...

  4. java中强,软,弱,虚引用 以及WeakHahMap

    java中强,软,弱,虚引用  以及WeakHahMap   一:强软引用: 参考:http://zhangjunhd.blog.51cto.com/113473/53092/进行分析   packa ...

  5. PHP和Python如何选择?或许可以考虑这三个问题

    撤稿纠错 文/黄小天.李亚洲 (选自Hackernoon 机器之心编译) 2017 年可谓是网页应用与 API 之年,开发者不用每次重新发明轮子,而是利用脚手架和第三方库就能确保项目在几天内实时部署. ...

  6. JavaSE笔记-泛型

    定义带泛型的类 public class Cat<T> { //可以用T定义实例变量 private T name; //可以用T定义形参 //构造器没有<> public C ...

  7. c#目录以及子目录下图片批量缩放,像素不变,图像大小改变

    采用多线程,整体效果 图像根目录黏贴或者手工选择,点击开始,进行目录底下图片筛查.采用多线程,点击开始按钮,开启线程,这样UI不会卡住 private void button2_Click(objec ...

  8. css FlexBox 弹性盒子常用方法总结

    总结一下弹性盒子常用的方法,弹性盒子的功能强大,这次我做了兼容性的felxbox,虽然代码多了一点,但在项目时候可以直接复制过来用,同时在项目上线的时候,如果这时候弹性盒子出了兼容问题,那就可急了~ ...

  9. DOS、Mac 和 Unix 文件格式[转]

    DOS.Mac 和 Unix 文件格式 相信很多朋友都碰到过这三种文件格式的互换问题,今日又碰到这个问题,忽然想寻根问底,于是整理了本文档. 文件格式区别   我们先看看这三个家伙有啥区别.很久以前, ...

  10. yum错误,Cannot find a valid baseurl for repo: base 和 No more mirrors to try

    可能出错原因: 1. yum 配置错误 2. 虚拟机无法连接外网 3. 域名解析没有 如何解决这个错误? 1. 网上找 /ect/yum.conf 和 /etc/yum.repos.d/CentOS- ...