2142: 礼物

Time Limit: 10 Sec  Memory Limit: 259 MB
Submit: 1294  Solved: 534
[Submit][Status][Discuss]

Description

一年一度的圣诞节快要来到了。每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物。不同的人物在小E心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多。小E从商店中购买了n件礼物,打算送给m个人,其中送给第i个人礼物数量为wi。请你帮忙计算出送礼物的方案数(两个方案被认为是不同的,当且仅当存在某个人在这两种方案中收到的礼物不同)。由于方案数可能会很大,你只需要输出模P后的结果。

Input

输入的第一行包含一个正整数P,表示模;第二行包含两个整整数n和m,分别表示小E从商店购买的礼物数和接受礼物的人数;以下m行每行仅包含一个正整数wi,表示小E要送给第i个人的礼物数量。

Output

若不存在可行方案,则输出“Impossible”,否则输出一个整数,表示模P后的方案数。

对于100%的数据,1≤n≤109,1≤m≤5,1≤pi^ci≤10^5。


会Lucas定理的P不是质数版本后这就是模板题啊

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=;
inline ll read(){
char c=getchar();ll x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
ll MOD,n,m,w[N];
ll Pow(ll a,ll b,ll P){
ll ans=;
for(;b;b>>=,a=a*a%P)
if(b&) ans=ans*a%P;
return ans;
}
void exgcd(ll a,ll b,ll &d,ll &x,ll &y){
if(b==) d=a,x=,y=;
else exgcd(b,a%b,d,y,x),y-=(a/b)*x;
}
ll Inv(ll a,ll n){
ll d,x,y;
exgcd(a,n,d,x,y);
return d==?(x+n)%n:-;
}
ll Fac(ll n,ll p,ll pr){
if(n==) return ;
ll re=;
for(ll i=;i<=pr;i++) if(i%p) re=re*i%pr;
re=Pow(re,n/pr,pr);
ll r=n%pr;
for(ll i=;i<=r;i++) if(i%p) re=re*i%pr;
return re*Fac(n/p,p,pr)%pr; }
ll C(ll n,ll m,ll p,ll pr){
if(n<m) return ;
ll x=Fac(n,p,pr),y=Fac(m,p,pr),z=Fac(n-m,p,pr);
ll c=;
for(int i=n;i;i/=p) c+=i/p;
for(int i=m;i;i/=p) c-=i/p;
for(int i=n-m;i;i/=p) c-=i/p;
ll a=x*Inv(y,pr)%pr*Inv(z,pr)%pr*Pow(p,c,pr)%pr;
return a*(MOD/pr)%MOD*Inv(MOD/pr,pr)%MOD;
}
ll Lucas(ll n,ll m){
ll x=MOD,re=;
for(ll i=;i<=x;i++) if(x%i==){
ll pr=;
while(x%i==) x/=i,pr*=i;
re=(re+C(n,m,i,pr))%MOD;
}
return re;
}
int main(){
//freopen("in","r",stdin);
MOD=read();n=read();m=read();
ll sum=;
for(int i=;i<=m;i++) w[i]=read(),sum+=w[i];
if(sum>n){puts("Impossible");return ;}
ll ans=;
for(int i=;i<=m;i++) ans=ans*Lucas(n,w[i])%MOD,n-=w[i];//,printf("hi %d %d\n",ans,n);
printf("%lld",ans);
}

BZOJ 2142: 礼物 [Lucas定理]的更多相关文章

  1. BZOJ - 2142 礼物 (扩展Lucas定理)

    扩展Lucas定理模板题(貌似这玩意也只能出模板题了吧~~本菜鸡见识鄙薄,有待指正) 原理: https://blog.csdn.net/hqddm1253679098/article/details ...

  2. BZOJ 2142 礼物 组合数学 CRT 中国剩余定理

    2142: 礼物 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1450  Solved: 593[Submit][Status][Discuss] ...

  3. ZOJ 3557 & BZOJ 2982 combination[Lucas定理]

    How Many Sets II Time Limit: 2 Seconds      Memory Limit: 65536 KB Given a set S = {1, 2, ..., n}, n ...

  4. 【题解】国家集训队礼物(Lucas定理)

    [国家集训队]礼物(扩展Lucas定理) 传送门可以直接戳标题 172.40.23.20 24 .1 答案就是一个式子: \[ {n\choose \Sigma_{i=1}^m w}\times\pr ...

  5. BZOJ 2142 礼物 数论

    这道题是求组合数终极版. C(n,m) mod P n>=1e9 m>=1e9 P>=1e9且为合数且piqi<=1e5 拓展lucas定理. 实际上就是一点数论小知识的应用. ...

  6. BZOJ 4403 2982 Lucas定理模板

    思路: Lucas定理的模板题.. 4403 //By SiriusRen #include <cstdio> using namespace std; ; #define int lon ...

  7. bzoj 2142 礼物——扩展lucas模板

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2142 没给P的范围,但说 pi ^ ci<=1e5,一看就是扩展lucas. 学习材料 ...

  8. BZOJ.2142.礼物(扩展Lucas)

    题目链接 答案就是C(n,m1) * C(n-m1,m2) * C(n-m1-m2,m3)...(mod p) 使用扩展Lucas求解. 一个很简单的优化就是把pi,pi^ki次方存下来,因为每次分解 ...

  9. 【刷题】BZOJ 2142 礼物

    Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店 ...

随机推荐

  1. 安装linux的关键步骤

  2. [学习OpenCV攻略][013][Mat - 基本图像容器]

    Mat 是一个类,由两个数据部分组成:矩阵头(包含矩阵尺寸,存储方法,存储地址等信息)和一个指向存储所有像素值的矩阵(根据所选存储方法的不同矩阵可以是不同的维数)的指针. 矩阵属于多个 Mat 对象, ...

  3. 使用gitbook 发布一个教程文档网站

    gitbook是一个好用的发布电子书的项目:使用gitbook 可以在本地写好文档再远程推送到库:也可以在gitbook提供的在线平台上制作电子书:要想在自己的服务器上使用gitbook 发布一个网站 ...

  4. 任务驱动 搭建SSM开发环境

    本篇主要阐述(IntelliJ IDEA + Maven + Spring + Spring MVC + Mybatis)搭建 为什么想要搭建ssm? 近期正好自己有一个小的点子要实现,恰好这学期开了 ...

  5. PHP操作MySQL对表增加一列(一个字段)

    2014-03-19 16:59 1471人阅读 评论(0) 收藏 举报 分类: MySQL(12) 对于已经建立好的数据库,在一个已经有字段的表内新加字段可用以下方法: mysql_query(&q ...

  6. struts配置json需要的jar包

  7. es6重点笔记:数值,函数和数组

    本篇全是重点,捡常用的怼,数值的扩展比较少,所以和函数放一起: 一,数值 1,Number.EPSILON:用来检测浮点数的计算,如果误差小于这个,就无误 2,Math.trunc():取整,去除小数 ...

  8. Fragment禁止预加载

    项目中经常会用到ViewPager+Fragment组合,然而,有一个很让人头疼的问题就是,去加载数据的时候由于ViewPager的内部机制所限制,所以它会默认至少预加载一个. 1.既然说是ViewP ...

  9. JavaScript Date 时间对象方法

    Date(日期/时间对象) Date 操作日期和时间的对象 Date.getDate( ) 返回一个月中的某一天 Date.getDay( ) 返回一周中的某一天 Date.getFullYear( ...

  10. Nginx日志中的金矿 -- 好文收藏

    转:http://www.infoq.com/cn/articles/nignx-log-goldmine Nginx(读作Engine-X)是现在最流行的负载均衡和反向代理服务器之一.如果你是一名中 ...