BZOJ 2142: 礼物 [Lucas定理]
2142: 礼物
Time Limit: 10 Sec Memory Limit: 259 MB
Submit: 1294 Solved: 534
[Submit][Status][Discuss]
Description
一年一度的圣诞节快要来到了。每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物。不同的人物在小E心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多。小E从商店中购买了n件礼物,打算送给m个人,其中送给第i个人礼物数量为wi。请你帮忙计算出送礼物的方案数(两个方案被认为是不同的,当且仅当存在某个人在这两种方案中收到的礼物不同)。由于方案数可能会很大,你只需要输出模P后的结果。
Input
输入的第一行包含一个正整数P,表示模;第二行包含两个整整数n和m,分别表示小E从商店购买的礼物数和接受礼物的人数;以下m行每行仅包含一个正整数wi,表示小E要送给第i个人的礼物数量。
Output
若不存在可行方案,则输出“Impossible”,否则输出一个整数,表示模P后的方案数。
对于100%的数据,1≤n≤109,1≤m≤5,1≤pi^ci≤10^5。
会Lucas定理的P不是质数版本后这就是模板题啊
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=;
inline ll read(){
char c=getchar();ll x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
ll MOD,n,m,w[N];
ll Pow(ll a,ll b,ll P){
ll ans=;
for(;b;b>>=,a=a*a%P)
if(b&) ans=ans*a%P;
return ans;
}
void exgcd(ll a,ll b,ll &d,ll &x,ll &y){
if(b==) d=a,x=,y=;
else exgcd(b,a%b,d,y,x),y-=(a/b)*x;
}
ll Inv(ll a,ll n){
ll d,x,y;
exgcd(a,n,d,x,y);
return d==?(x+n)%n:-;
}
ll Fac(ll n,ll p,ll pr){
if(n==) return ;
ll re=;
for(ll i=;i<=pr;i++) if(i%p) re=re*i%pr;
re=Pow(re,n/pr,pr);
ll r=n%pr;
for(ll i=;i<=r;i++) if(i%p) re=re*i%pr;
return re*Fac(n/p,p,pr)%pr; }
ll C(ll n,ll m,ll p,ll pr){
if(n<m) return ;
ll x=Fac(n,p,pr),y=Fac(m,p,pr),z=Fac(n-m,p,pr);
ll c=;
for(int i=n;i;i/=p) c+=i/p;
for(int i=m;i;i/=p) c-=i/p;
for(int i=n-m;i;i/=p) c-=i/p;
ll a=x*Inv(y,pr)%pr*Inv(z,pr)%pr*Pow(p,c,pr)%pr;
return a*(MOD/pr)%MOD*Inv(MOD/pr,pr)%MOD;
}
ll Lucas(ll n,ll m){
ll x=MOD,re=;
for(ll i=;i<=x;i++) if(x%i==){
ll pr=;
while(x%i==) x/=i,pr*=i;
re=(re+C(n,m,i,pr))%MOD;
}
return re;
}
int main(){
//freopen("in","r",stdin);
MOD=read();n=read();m=read();
ll sum=;
for(int i=;i<=m;i++) w[i]=read(),sum+=w[i];
if(sum>n){puts("Impossible");return ;}
ll ans=;
for(int i=;i<=m;i++) ans=ans*Lucas(n,w[i])%MOD,n-=w[i];//,printf("hi %d %d\n",ans,n);
printf("%lld",ans);
}
BZOJ 2142: 礼物 [Lucas定理]的更多相关文章
- BZOJ - 2142 礼物 (扩展Lucas定理)
扩展Lucas定理模板题(貌似这玩意也只能出模板题了吧~~本菜鸡见识鄙薄,有待指正) 原理: https://blog.csdn.net/hqddm1253679098/article/details ...
- BZOJ 2142 礼物 组合数学 CRT 中国剩余定理
2142: 礼物 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1450 Solved: 593[Submit][Status][Discuss] ...
- ZOJ 3557 & BZOJ 2982 combination[Lucas定理]
How Many Sets II Time Limit: 2 Seconds Memory Limit: 65536 KB Given a set S = {1, 2, ..., n}, n ...
- 【题解】国家集训队礼物(Lucas定理)
[国家集训队]礼物(扩展Lucas定理) 传送门可以直接戳标题 172.40.23.20 24 .1 答案就是一个式子: \[ {n\choose \Sigma_{i=1}^m w}\times\pr ...
- BZOJ 2142 礼物 数论
这道题是求组合数终极版. C(n,m) mod P n>=1e9 m>=1e9 P>=1e9且为合数且piqi<=1e5 拓展lucas定理. 实际上就是一点数论小知识的应用. ...
- BZOJ 4403 2982 Lucas定理模板
思路: Lucas定理的模板题.. 4403 //By SiriusRen #include <cstdio> using namespace std; ; #define int lon ...
- bzoj 2142 礼物——扩展lucas模板
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2142 没给P的范围,但说 pi ^ ci<=1e5,一看就是扩展lucas. 学习材料 ...
- BZOJ.2142.礼物(扩展Lucas)
题目链接 答案就是C(n,m1) * C(n-m1,m2) * C(n-m1-m2,m3)...(mod p) 使用扩展Lucas求解. 一个很简单的优化就是把pi,pi^ki次方存下来,因为每次分解 ...
- 【刷题】BZOJ 2142 礼物
Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店 ...
随机推荐
- 语义化版本控制规范(SemVer)
摘自: http://semver.org/lang/zh-CN/ 简介 在软件管理的领域里存在着被称作"依赖地狱"的死亡之谷,系统规模越大,加入的套件越多,你就越有可能在未来的某 ...
- 如何检测浏览器url变化
用户通过“点击触发”,“操作历史”,“直接访问URL”的方式修改当前URL.这三种触发方式会使浏览器做出不同的行为 html5提供了两种方式在页面中操作历史 history.pushState(sta ...
- 用adb录制手机屏幕视频
adb shell screenrecord命令可以用来录制Android手机视频 screenrecord是一个shell命令,支持Android4.4(API level 19)以上,支持视频格式 ...
- WIN2016安装织梦没写入权限怎么办听语音
配置好了WINSERVER2016环境,一切看起来都弄得差不多了,可是安装织梦的时候提示我没有写入权限,不能继续安装,于是我很郁闷,开始寻求解决办法. 工具/原料 WINSERVER2016 织梦5. ...
- .32-浅析webpack源码之doResolve事件流(4)
流程图如下: 重回DescriptionFilePlugin 上一节最后进入relative事件流,注入地点如下: // relative plugins.push(new DescriptionFi ...
- [机器学习]模型评价参数,准确率,召回率,F1-score
很久很久以前,我还是有个建筑梦的大二少年,有一天,讲图的老师看了眼我的设计图,说:"我觉得你这个设计做得很紧张".当时我就崩溃,对紧张不紧张这样的评价标准理解无能.多年后我终于明白 ...
- 如何从Android工程导出apk安装包
http://jingyan.baidu.com/article/1876c852b3208b890b137606.html
- NSMutableArray 记住取不到时要进行强转
NSMutableArray 记住取不到时要进行强转
- CCF系列之日期计算(201509-2)
试题编号: 201509-2 时间限制: 1.0s 内存限制: 256.0MB 问题描述 给定一个年份y和一个整数d,问这一年的第d天是几月几日? 注意闰年的2月有29天.满足下面条件之一的是闰年: ...
- Linux Server release 7.3 更换阿里网络yum源
查看当前系统下的yum源 [root@localhost ~]# rpm -qa |grep yum yum-3.4.3-150.el7.noarch yum-utils-1.1.31-40.el7. ...