[Sdoi2017]序列计数 [矩阵快速幂]
[Sdoi2017]序列计数
题意:长为\(n \le 10^9\)由不超过\(m \le 2 \cdot 10^7\)的正整数构成的和为\(t\le 100\)的倍数且至少有一个质数的序列个数
总-没有质数
裸矩阵快速幂,\(i \rightarrow (i+k)\mod t\)
但是构造矩阵m个数一个个试的话复杂度\(O(mt)\)
我们只管心\(\mod t\)之后的结果,处理处每个模t等价类的个数用它来构造矩阵就好了。我是zz
注意卡内存,存质数的数组可以小一点
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <ctime>
using namespace std;
const int N=2e7+5, mo=20170408;
typedef long long ll;
inline int read() {
char c=getchar(); int x=0, f=1;
while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
return x*f;
}
int n, m, t;
int p[2000000], notp[N], c1[105], c2[105];
void sieve(int n) {
notp[1]=1;
for(int i=2; i<=n; i++) { //printf("i %d\n",i);
if(!notp[i]) p[++p[0]]=i;
for(int j=1; j<=p[0] && i*p[j]<=n; j++) { //printf("j %d\n",p[j]);
notp[ i*p[j] ]=1;
if(i % p[j] == 0) break;
}
}
for(int i=1; i<=n; i++) c1[ i%t ]++, c2[ i%t ] += notp[i];
}
inline void mod(ll &x) {if(x>=mo) x-=mo;}
struct meow {
ll a[101][101];
meow() {memset(a, 0, sizeof(a));}
ll* operator [](int x) {return a[x];}
void ini() {for(int i=0; i<t; i++) a[i][i]=1;}
}g, a;
meow operator *(meow a, meow b) {
meow c;
for(int i=0; i<t; i++)
for(int k=0; k<t; k++)
for(int j=0; j<t; j++)
mod(c[i][j] += a[i][k] * b[k][j] %mo);
return c;
}
meow operator ^(meow a, int b) {
meow ans; ans.ini();
for(; b; b>>=1, a=a*a)
if(b&1) ans=ans*a;
return ans;
}
void build1() {
for(int i=0; i<t; i++)
for(int j=0; j<t; j++) g[i][ (i + j)%t ] += c1[j];
}
void build2() {
a = meow(); g = meow();
for(int i=0; i<t; i++)
for(int j=0; j<t; j++) g[i][ (i + j)%t ] += c2[j];
}
int main() {
freopen("count.in", "r", stdin);
freopen("count.out", "w", stdout);
n=read(); m=read(); t=read();
sieve(m);
build1();
a[0][0]=1; a = (g^n) * a;
ll ans = a[0][0];
build2();
a[0][0]=1; a = (g^n) * a;
ans = (ans - a[0][0] + mo) % mo;
cout << ans;
}
[Sdoi2017]序列计数 [矩阵快速幂]的更多相关文章
- BZOJ.4818.[SDOI2017]序列计数(DP 快速幂)
BZOJ 洛谷 竟然水过了一道SDOI!(虽然就是很水...) 首先暴力DP,\(f[i][j][0/1]\)表示当前是第\(i\)个数,所有数的和模\(P\)为\(j\),有没有出现过质数的方案数. ...
- [BZOJ 4818/LuoguP3702][SDOI2017] 序列计数 (矩阵加速DP)
题面: 传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=4818 Solution 看到这道题,我们不妨先考虑一下20分怎么搞 想到暴力,本蒟 ...
- 【bzoj4818】[Sdoi2017]序列计数 矩阵乘法
原文地址:http://www.cnblogs.com/GXZlegend/p/6825132.html 题目描述 Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的 ...
- Luogu3702 SDOI2017 序列计数 矩阵DP
传送门 不考虑质数的条件,可以考虑到一个很明显的$DP:$设$f_{i,j}$表示选$i$个数,和$mod\ p=j$的方案数,显然是可以矩阵优化$DP$的. 而且转移矩阵是循环矩阵,所以可以只用第一 ...
- [Sdoi2017]序列计数 矩阵优化dp
题目 https://www.lydsy.com/JudgeOnline/problem.php?id=4818 思路 先考虑没有质数限制 dp是在同余系下的,所以\(f[i][j]\)表示前i个点, ...
- BZOJ 4818 [Sdoi2017]序列计数 ——矩阵乘法
发现转移矩阵是一个循环矩阵. 然后循环矩阵乘以循环矩阵还是循环矩阵. 据说还有FFT并且更优的做法. 之后再看吧 #include <map> #include <cmath> ...
- luogu 3702 [SDOI2017]序列计数 矩阵乘法+容斥
现在看来这道题真的不难啊~ 正着求不好求,那就反着求:答案=总-全不是质数 这里有一个细节要特判:1不是质数,所以在算全不是质数的时候要特判1 code: #include <bits/stdc ...
- 2019.02.11 bzoj4818: [Sdoi2017]序列计数(矩阵快速幂优化dp)
传送门 题意简述:问有多少长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数,且其中至少有一个数是质数,答案对201704082017040820170408取模(n≤1e9, ...
- BZOJ4818 [SDOI2017] 序列计数 【矩阵快速幂】
题目分析: 一个很显然的同类项合并.注意到p的大小最大为100,考虑把模p意义下相同的求出来最后所有的减去没有质数的做矩阵快速幂即可. 代码: #include<bits/stdc++.h> ...
随机推荐
- NYoj_20吝啬的国度
吝啬的国度 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 在一个吝啬的国度里有N个城市,这N个城市间只有N-1条路把这个N个城市连接起来.现在,Tom在第S号城市,他有 ...
- 织梦5.7DEDECMS标签大全
1.关键描述调用标签: 2.路径调用标签: {dede:field name='templeturl'/} {dede:global.cfg_templets_skin/} 3.网站标题调用标签: d ...
- dede表前缀不定时,查询表#@__archives
$query = "SELECT arc.*,tp.typedir,tp.typename, tp.isdefault,tp.defaultname,tp.nam ...
- javascript中window.location.search的用法和作用。
用该属性获取页面 URL 地址: window.location 对象所包含的属性 属性 描述 hash 从井号 (#) 开始的 URL(锚) host 主机名和当前 URL 的端口号 hostnam ...
- php 抽奖概率 随机数
<?php $prize_arr = array( '0' => array('id' => 1, 'title' => 'iphone5s', 'v' => 5), ' ...
- Python 爬取美女图片,分目录多级存储
最近有个需求:下载https://mm.meiji2.com/网站的图片. 所以简单研究了一下爬虫. 在此整理一下结果,一为自己记录,二给后人一些方向. 爬取结果如图: 整体研究周期 2-3 天, ...
- CCF系列之图像旋转(201503-1)
试题编号: 201503-1时间限制: 5.0s 内存限制: 256.0MB 问题描述 旋转是图像处理的基本操作,在这个问题中,你需要将一个图像逆时针旋转90度. 计算机中的图像表示可以用一个矩阵来表 ...
- RequireJS(一)
RequireJS: RequireJS中文网:http://www.requirejs.cn/ 解决HTML引入大量js文件导致的问题: 首先是加载的时候,浏览器会停止网页渲染,加载文件越多,网页失 ...
- ajax和跨域
一.简介 ajax是什么? AJAX(Asynchronous JavaScript and XML) 是一种在无需重新加载整个网页的情况下,能够更新部分网页的技术. AJAX, (异步的JavaSc ...
- 如何将阿里云mysql RDS备份文件恢复到自建数据库
参考地址:https://help.aliyun.com/knowledge_detail/41817.html PS:目前恢复只支持 Linux 下进行.Linux下恢复的数据文件,无论 Windo ...