ZOJ [P2314] 无源汇点有上下界模版
对于有上下界的网络流来说,我们可以分离出必要弧,然后将必要弧切开,两端分别连接源点和汇点,原图有可行解充要于源点或汇点满流.
这样求下来,只能求出可行流
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <queue>
using namespace std;
int n,m,s,t,head[250],cur[250],dep[250],nume;
int init(){
int rv=0,fh=1;
char c=getchar();
while(c<'0'||c>'9'){
if(c=='-') fh=-1;
c=getchar();
}
while(c>='0'&&c<='9'){
rv=(rv<<1)+(rv<<3)+c-'0';
c=getchar();
}
return fh*rv;
}
struct edge{
int to,nxt,cap,flow;
}e[500005];
void adde(int from,int to,int cap){
e[++nume].to=to;
e[nume].cap=cap;
e[nume].nxt=head[from];
head[from]=nume;
e[nume].flow=0;
}
bool bfs(){
queue<int> q;
while(!q.empty()) q.pop();
memset(dep,0,sizeof(dep));
q.push(s);
dep[s]=1;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(!dep[v]&&(e[i].flow<e[i].cap)){
dep[v]=dep[u]+1;
q.push(v);
}
}
}
if(dep[t]) return 1;
else return 0;
}
int dfs(int u,int flow){
if(u==t) return flow;
int tot=0;
for(int &i=cur[u];i&&tot<flow;i=e[i].nxt){
int v=e[i].to;
//printf("%d %d\n",v,e[i].cap-e[i].flow);
if((dep[v]==dep[u]+1)&&(e[i].flow<e[i].cap)){
if(int t=dfs(v,min(flow-tot,e[i].cap-e[i].flow))){
e[i].flow+=t;
//cout<<t<<endl;
e[((i-1)^1)+1].flow-=t;
tot+=t;
}
}
}
return tot;
}
int dinic(){
int ans=0;
while(bfs()){
for(int i=1;i<=n+2;i++) cur[i]=head[i];
ans+=dfs(s,0x3f3f3f3f);
}
return ans;
}
int main(){
int T=init();
while(T--){
int tot=0,ans=0;
n=init();m=init();
s=n+2;t=n+1;
memset(head,0,sizeof(head));
nume=0;
for(int i=1;i<=m;i++){
int u=init(),v=init(),b=init(),d=init();
adde(u,v,d-b);
adde(v,u,0);
adde(s,v,b);//千万不要建反
adde(v,s,0);
adde(u,t,b);
adde(t,u,0);
tot+=b;
}
ans=dinic();
// for(int i=head[s];i;i=e[i].nxt) cout<<e[i].to<<endl;
if(ans<tot) printf("NO\n");
else{
printf("YES\n");
for(int i=1;i<=nume;i+=6){
printf("%d\n",e[i].flow+e[i+2].cap);
}
}
printf("\n");
}
return 0;
}
ZOJ [P2314] 无源汇点有上下界模版的更多相关文章
- LOJ #116 有源汇点有上下界的最大流
先连一条从汇点到源点的容量为INF的边,将其转化成无源汇点有上下界的可行流,判断是否可行 若可行的话删掉超级源点和超级汇点,再跑一遍最大流即可 #include <iostream> #i ...
- ZOJ 2314 (sgu 194) Reactor Cooling (无源汇有上下界最大流)
题意: 给定n个点和m条边, 每条边有流量上下限[b,c], 求是否存在一种流动方法使得每条边流量在范围内, 而且每个点的流入 = 流出 分析: 无源汇有上下界最大流模板, 记录每个点流的 in 和 ...
- Zoj 2314 Reactor Cooling(无源汇有上下界可行流)
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 题意: 给n个点,及m根pipe,每根pipe用来流躺液体的,单向 ...
- zoj 3229 有源汇有上下界的最大流模板题
/*坑啊,pe的程序在zoj上原来是wa. 题目大意:一个屌丝给m个女神拍照.计划拍照n天,每一天屌丝最多个C个女神拍照,每天拍照数不能超过D张,并且给每一个女神i拍照有数量限制[Li,Ri], 对于 ...
- HDU 4940 Destroy Transportation system(无源汇有上下界最大流)
看不懂题解以及别人说的集合最多只有一个点..... 然后试了下题解的方法http://blog.sina.com.cn/s/blog_6bddecdc0102uzka.html 首先是无源汇有上下界最 ...
- 【LOJ115】无源汇有上下界可行流(模板题)
点此看题面 大致题意: 给你每条边的流量上下界,让你判断是否存在可行流.若有,则还需输出一个合法方案. 大致思路 首先,每条边既然有一个流量下界\(lower\),我们就强制它初始流量为\(lower ...
- 无源汇有上下界可行流(ZQU 1590)
无源汇有上下界可行流(也就是循环流) 模型:一个网络,求出一个流,使得每条边的流量必须>=Li且<=Hi, 每个点必须满足总流入量=总流出量(流量守恒)(这个流的特点是循环往复,无始无终) ...
- 【模板】无源汇有上下界可行流(网络流)/ZOJ2314
先导知识 网络最大流 题目链接 https://vjudge.net/problem/ZOJ-2314 题目大意 多组数据,第一行为数据组数 \(T\). 对于每一组数据,第一行为 \(n,m\) 表 ...
- SGU 194. Reactor Cooling(无源汇有上下界的网络流)
时间限制:0.5s 空间限制:6M 题意: 显然就是求一个无源汇有上下界的网络流的可行流的问题 Solution: 没什么好说的,直接判定可行流,输出就好了 code /* 无汇源有上下界的网络流 * ...
随机推荐
- c++(爬楼梯)
前两天上网的时候看到一个特别有意思的题目,在这里和朋友们分享一下: 有一个人准备开始爬楼梯,假设楼梯有n个,这个人只允许一次爬一个楼梯或者一次爬两个楼梯,请问有多少种爬法? 在揭晓答案之前,朋友们可以 ...
- Thinking in Java学习笔记-泛型和类型安全的容器
示例: public class Apple { private static long counter; private final long id = counter++; public long ...
- 如何让低版本IE浏览器支持HTML5标签并为其设置样式
现代的浏览器都支持HTML5,HTML5定义了 8 个新的 HTML 语义元素.所有这些元素都是 块级 元素. 为了能让旧版本的浏览器正确显示这些元素,你可以设置 CSS 的 display 属性值为 ...
- parseInt原来是这样用的
今天在群里无意中看到了这样一个问题,突然发现不会,结果运行一看,懵逼了,不知道为什么???(结果是啥?自己去试试看) 现在我们还是先来复习一下parseInt()这个知识点吧! parseInt() ...
- Android开发之漫漫长途 XII——Fragment详解
该文章是一个系列文章,是本人在Android开发的漫漫长途上的一点感想和记录,我会尽量按照先易后难的顺序进行编写该系列.该系列引用了<Android开发艺术探索>以及<深入理解And ...
- 从零开始学习前端开发 — 15、CSS3过渡、动画
一.css3过渡 语法: transition: 过渡属性 过渡时间 延迟时间 过渡方式; 1.过渡属性(transition-property) 取值:all 所有发生变化的css属性都添加过渡 e ...
- sublime 中HTML快捷键
- Thinkphp+Nginx(PHPstudy)下报的404错误,403错误解决
最近一个TP5的项目说放到Nginx下测试看看,下载个 PHPstudy,放到WWW下,配置好域名,直接给个报个404: 解决方法: 1.先在phpstudy下配置好域名目录指向项目下的public下 ...
- HTML 5 <canvas> 标签
<!DOCTYPE HTML> <html> <body> <canvas id="myCanvas">your browser d ...
- ThinkPhp 添加模型类
----------------------------------------------- <?phpnamespace app\common\model;use traits\model\ ...