2034: [2009国家集训队]最大收益

题意:\(n \le 5000\)个区间\(l,r\le 10^8\),每个区间可以选一个点得到val[i]的价值,每个点最多选1次,求最大价值


线段树优化建边的做法见上一篇

论文




先把l,r离散化了,因为一个区间只选一个点,所以我们对于每个区间拿出一个点来就行了,方法是按l排序然后每个区间选左边界后的第一个未选点

当然这个点可能超出区间,所以我们要让区间与点匹配得到最大价值


  • 法1:裸上二分图最大权匹配,即使线段树优化建边还是承受不了
  • 法2:这个二分图很特殊,X的出边权值相同,我们可以贪心从大到小选择,用Hungary找增广路,复杂度\(O(n^3)\)
  • 法3:这个二分图超级特殊啊,X中每个点出边的集合是连续的一段,我们很方便比较两个点的可匹配点集合的大小,如果可匹配点集合更大的都找不到未盖点小的根本不用找啊!我们修改一下Hungary的过程,记下当前选到Y的哪个点now,如果now未匹配则匹配now,否则比较now的匹配点与当前点可匹配集合的大小,让更大的去找匹配。这样就省去了每个点遍历所有出边的过程,复杂度\(O(n^2)\)

总结

让深入分析问题的性质! 贪心乱搞随便过

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define fir first
#define sec second
typedef long long ll;
const int N=1e4+5, INF=1e9;
inline ll read(){
char c=getchar();ll x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
} int n;
struct meow{
int l, r, val;
bool operator <(const meow &a) const {return val>a.val;}
}a[N];
bool cmp(const meow &a, const meow &b) {return a.l < b.l;}
int mp[N], m;
void disc() {
sort(a+1, a+1+n, cmp);
mp[++m]=a[1].l; int now=mp[m];
for(int i=2; i<=n; i++)
mp[++m] = max(now+1, a[i].l), now=mp[m];
for(int i=1; i<=n; i++) {
a[i].l = lower_bound(mp+1, mp+1+m, a[i].l) - mp;
int t = lower_bound(mp+1, mp+1+m, a[i].r) - mp;
a[i].r = mp[t] == a[i].r ? t : t-1;
}
}
int le[N];
bool find(int u, int now) {
if(now>a[u].r) return false;
if(!le[now]) {le[now]=u; return true;}
if(a[u].r > a[le[now]].r) return find(u, now+1);
else {
if(find(le[now], now+1)) {le[now]=u; return true;}
else return false;
}
}
void solve() {
sort(a+1, a+1+n);
ll ans=0;
for(int i=1; i<=n; i++) if(find(i, a[i].l)) ans+=a[i].val;
printf("%lld", ans);
}
int main() {
freopen("in","r",stdin);
n=read();
for(int i=1; i<=n; i++) a[i].l=read(), a[i].r=read()-1, a[i].val=read();
disc();
solve();
}

BZOJ 2034: [2009国家集训队]最大收益 [贪心优化 Hungary]的更多相关文章

  1. 【BZOJ2034】[2009国家集训队]最大收益 贪心优化最优匹配

    [BZOJ2034][2009国家集训队]最大收益 Description 给出N件单位时间任务,对于第i件任务,如果要完成该任务,需要占用[Si, Ti]间的某个时刻,且完成后会有Vi的收益.求最大 ...

  2. BZOJ.2034.[2009国家集训队]最大收益(二分图匹配 贪心)

    题目链接 双倍经验:BZOJ.4276.[ONTAK2015]Bajtman i Okrągły Robin(然而是个权限题.区间略有不同) \(Description\) 有\(n\)个任务,完成一 ...

  3. BZOJ 2038: [2009国家集训队]小Z的袜子

    二次联通门 : BZOJ 2038: [2009国家集训队]小Z的袜子 /* BZOJ 2038: [2009国家集训队]小Z的袜子 莫队经典题 但是我并不认为此题适合入门.. Answer = ∑ ...

  4. BZOJ 2039: [2009国家集训队]employ人员雇佣

    2039: [2009国家集训队]employ人员雇佣 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 1369  Solved: 667[Submit ...

  5. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7687  Solved: 3516[Subm ...

  6. BZOJ 2038: [2009国家集训队]小Z的袜子(hose)

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7676  Solved: 3509[Subm ...

  7. BZOJ 2038 [2009国家集训队]小Z的袜子 莫队

    2038: [2009国家集训队]小Z的袜子(hose) 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=2038 Descriptionw ...

  8. Bzoj 2038: [2009国家集训队]小Z的袜子(hose) 莫队,分块,暴力

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 5763  Solved: 2660[Subm ...

  9. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) ( 莫队 )

    莫队..先按sqrt(n)分块, 然后按块的顺序对询问排序, 同块就按右端点排序. 然后就按排序后的顺序暴力求解即可. 时间复杂度O(n1.5) --------------------------- ...

随机推荐

  1. 2017ecjtu-summer training # 11 POJ 2492

    A Bug's Life Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 38280   Accepted: 12452 D ...

  2. hdu_3003Pupu(快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3003 Pupu Time Limit: 2000/1000 MS (Java/Others)    M ...

  3. Windows系统下文件的概念及c语言对其的基本操作(甲)

    文件概念

  4. spring是什么???

    1.是一个容器 2.用于降低代码间的耦合度3.根据不同的代码采用ioc和aop两种技术解耦合...

  5. SQL Server 使用问题解答(持续更新中)

    问题一:sql server 2014不允许保存更改,您所做的更改要求删除并重新创建以下表 解答:工具-选项-不勾选组织保存要求重新创建表的更改,如下图确定.

  6. 数据库01创建表和DML语言

    楼主用的数据库时mysql,用的时navacat for mysql. 数据库层面: 1.显示所有数据库 show databases; 2.创建数据库,名字叫lyh,编码为utf-8 create ...

  7. 跟我一起读postgresql源码(十三)——Executor(查询执行模块之——Join节点(上))

    Join节点 JOIN节点有以下三种: T_NestLoopState, T_MergeJoinState, T_HashJoinState, 连接类型节点对应于关系代数中的连接操作,PostgreS ...

  8. navicat将多个表导出为一个sql文件

    1.shift选中多个表 2右键选择--转储sql文件---结构和数据

  9. Fontawesome字体使用说明及其常用效果语法

    标签: 字体图标iconfontawesom Font web开发(17) 版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[+] 本文主要介绍如何在我们的站点里引入Footaweso ...

  10. Linux 中出现的-bash: syntax error near unexpected token `

    版权声明:本文为博主原创文章,未经博主允许不得转载. 在Linux 5中导入数据时,出现下面的错误. -bash: syntax error near unexpected token `(' 检查了 ...