[bzoj1063][Noi2008]道路设计
来自FallDream的博客,未经允许,请勿转载,谢谢。
Z国坐落于遥远而又神奇的东方半岛上,在小Z的统治时代公路成为这里主要的交通手段。Z国共有n座城市,一些城市之间由双向的公路所连接。非常神奇的是Z国的每个城市所处的经度都不相同,并且最多只和一个位于它东边的城市直接通过公路相连。Z国的首都是Z国政治经济文化旅游的中心,每天都有成千上万的人从Z国的其他城市涌向首都。为了使Z国的交通更加便利顺畅,小Z决定在Z国的公路系统中确定若干条规划路线,将其中的公路全部改建为铁路。我们定义每条规划路线为一个长度大于1的城市序列,每个城市在该序列中最多出现一次,序列中相邻的城市之间由公路直接相连(待改建为铁路)。并且,每个城市最多只能出现在一条规划路线中,也就是说,任意两条规划路线不能有公共部分。当然在一般情况下是不可能将所有的公路修建为铁路的,因此从有些城市出发去往首都依然需要通过乘坐长途汽车,而长途汽车只往返于公路连接的相邻的城市之间,因此从某个城市出发可能需要不断地换乘长途汽车和火车才能到达首都。我们定义一个城市的“不便利值”为从它出发到首都需要乘坐的长途汽车的次数,而Z国的交通系统的“不便利值”为所有城市的不便利值的最大值,很明显首都的“不便利值”为0。小Z想知道如何确定规划路线修建铁路使得Z国的交通系统的“不便利值”最小,以及有多少种不同的规划路线的选择方案使得“不便利值”达到最小。当然方案总数可能非常大,小Z只关心这个天文数字modQ后的值。注意:规划路线1-2-3和规划路线3-2-1是等价的,即将一条规划路线翻转依然认为是等价的。两个方案不同当且仅当其中一个方案中存在一条规划路线不属于另一个方案。
n<=100000 Q<=120000000
第一问是树形dp,f[i][0/1/2]表示第i个点,向下建了0/1/2条道路的最长的长度的最小值。
可以用树剖证明答案是log级的。
这样就直接计算方案数就行了 g[i][0/1/2][k]表示第i个点向下建了0/1/2条道路,最长的路的长度是k的方案数
复杂度nlog^2n
#include<iostream>
#include<cstdio>
#define MN 100000
using namespace std;
inline int read()
{
int x = , f = ; char ch = getchar();
while(ch < '' || ch > ''){ if(ch == '-') f = -; ch = getchar();}
while(ch >= '' && ch <= ''){x = x * + ch - '';ch = getchar();}
return x * f;
}
int n,m,mod,head[MN+],cnt=,g[MN+],G[MN+],f[][][MN+],F[][][MN+];
struct edge{int to,next;}e[MN*+];
inline void ins(int f,int t)
{
e[++cnt]=(edge){t,head[f]};head[f]=cnt;
e[++cnt]=(edge){f,head[t]};head[t]=cnt;
} void Pre(int x,int fa)
{
g[x]=G[x]=;int mx=;
for(int i=head[x];i;i=e[i].next)
if(e[i].to!=fa)
{
Pre(e[i].to,x);
G[x]=min(max(G[x],G[e[i].to]+),max(g[x],g[e[i].to]));
g[x]=min(max(mx,g[e[i].to]),max(g[x],G[e[i].to]+));
mx=max(mx,G[e[i].to]+);
}
G[x]=min(G[x],g[x]);
}
inline void R(int&x,int y){x+=y;x>=mod?x-=mod:;}
void Dp(int x,int fa)
{
f[][][x]=%mod;
for(int i=head[x];i;i=e[i].next)
if(e[i].to!=fa)
{
Dp(e[i].to,x);
for(int j=;~j;--j)
for(int k=m;~k;--k)
for(int l=m;~l;--l)
{
if(j<) R(F[j+][max(l,k)][x],1LL*f[j][l][x]*(f[][k][e[i].to]+f[][k][e[i].to])%mod);
R(F[j][max(l,k+)][x],1LL*f[j][l][x]*(f[][k][e[i].to]+f[][k][e[i].to]+f[][k][e[i].to])%mod);
}
for(int j=;j<=;++j)
for(int k=;k<=m;++k)
f[j][k][x]=F[j][k][x],F[j][k][x]=;
}
} int main()
{
n=read();m=read();mod=read();
if(m<n-) return *puts("-1\n-1");
for(int i=;i<n;++i) ins(read(),read());
Pre(,);m=G[];
Dp(,);
printf("%d\n%d\n",m,(f[][m][]+f[][m][]+f[][m][])%mod);
return ;
}
[bzoj1063][Noi2008]道路设计的更多相关文章
- BZOJ1063 NOI2008 道路设计 树形DP
题目传送门: BZOJ 题意精简版:给出一棵树,在一种方案中可以将树的若干链上的所有边的边权改为$0$,但需要保证任意两条链之间没有交点.问最少的一种方案,使得从根节点到其他节点经过的边的边权和的最大 ...
- 1063: [Noi2008]道路设计 - BZOJ
Description Z 国坐落于遥远而又神奇的东方半岛上,在小Z 的统治时代公路成为这里主要的交通手段.Z 国共有n 座城市,一些城市之间由双向的公路所连接.非常神奇的是Z 国的每个城市所处的经度 ...
- [NOI2008] 道路设计
link 思维题目,题目描述其实说的就是这是一个树,想到树形$dp$.若两个铁路不向交,则每个点的度都$\leq 2$.所以现在就可以搞dp了. 怎么去维护答案,容易想到设$dp(i,j,k)$为现在 ...
- 并不对劲的[Noi2008]道路设计
Time Limit: 20 Sec Memory Limit: 162 MB Submit: 931 Solved: 509 [Submit][Status][Discuss] Descriptio ...
- Noip前的大抱佛脚----赛前任务
赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- dp专练
dp练习. codevs 1048 石子归并 区间dp #include<cstdio> #include<algorithm> #include<cstring> ...
- 【BZOJ1063】【NOI2008】道路设计(动态规划)
[BZOJ1063][NOI2008]道路设计(动态规划) 题面 BZOJ 题解 发现每个点最多只能被修一次等价于每个点最多只能和两条铁路相邻 考虑一个\(dp\) 设\(f[i][0/1/2]\)表 ...
- 【NOI题解】【bzoj题解】NOI2008 bzoj1063 道路设计
@ACMLCZH学长出的毒瘤题T3.再也不是“善良”的出题人了. 题意:bzoj. 题解: 经典的树形DP题目,屡见不鲜了,然而我还是没有写出来. 这一类的题目有很多,例如这里的C题. 主要套路是把对 ...
随机推荐
- 在django模板中添加jquery
路径 /project_name /app_name /templates /index.html /project_name setting.py /static /js jquery.js 导入方 ...
- 大神都在看的RxSwift 的完全入坑手册
大神都在看的RxSwift 的完全入坑手册 2015-09-24 18:25 CallMeWhy callmewhy 字号:T | T 我主要是通过项目里的 Rx.playground 进行学习和了解 ...
- 第十条:始终要覆盖toString()方法
Object类提供的toString()方法如下: public String toString() { return getClass().getName() + "@" ...
- 如何使用ILAsm与ILDasm修改.Net exe(dll)文件
一.背景 最近项目组新上项目,交付的时间比较急迫,原本好的分支管理习惯没有遵守好,于是出现下面状况: 多个小伙伴在不同的分支上开发. 原本QA环境也存在一个阻碍性的bug A 一位同事在QA环境发布了 ...
- 09-TypeScript中的继承
在后端开发语言中,继承是非常重要的概念,继承可以让子类具有父类的成员和方法,通过实例化子类,就可以访问父类的成员和方法. 在JavaScript中,需要通过原型模式来模拟继承的实现.而在TypeScr ...
- style scoped
scoped: 只在父div和其内容内生效,
- linux的slect的脚本适用于交互
[rhuang@localhost ~]$ vi os.sh #!/bin/bash echo "What is your favourite OS?" select var in ...
- 记一次oracle crs无法重启事故
今天在修改了数据库参数后,关闭数据库及crs,然后重新启动了服务器,服务器启动完成之后,发现数据库无法启动,过程如下: step1:重启数据库 $ su - grid $ srvctl stop da ...
- JavaScript 原型中的哲学思想
学习JavaScript过程中,原型问题一直让我疑惑许久,那时候捧着那本著名的红皮书,看到有关原型的讲解时,总是心存疑虑.当在JavaScript世界中走过不少旅程之后,再次萌发起研究这部分知识的欲望 ...
- 怎样使用下载的bootstrap模板?
核心文件bootstarp.css和bootstarp.js导入到页面,然后看着官网的代码复制进去用就可以了.网上是有不少教程的.实际上就是加class 属性 ,如:http://www.runoob ...