3437: 小P的牧场

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1542  Solved: 849
[Submit][Status][Discuss]

Description

小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制站控制的牧场是它所在的牧场一直到它西边第一个控制站的所有牧场(它西边第一个控制站所在的牧场不被控制)(如果它西边不存在控制站,那么它控制西边所有的牧场),每个牧场被控制都需要一定的花费(毕竟在控制站到牧场间修建道路是需要资源的嘛~),而且该花费等于它到控制它的控制站之间的牧场数目(不包括自身,但包括控制站所在牧场)乘上该牧场的放养量,在第i个牧场建立控制站的花费是ai,每个牧场i的放养量是bi,理所当然,小P需要总花费最小,但是小P的智商有点不够用了,所以这个最小总花费就由你来算出啦。

Input

第一行一个整数 n 表示牧场数目

第二行包括n个整数,第i个整数表示ai

第三行包括n个整数,第i个整数表示bi

Output

只有一行,包括一个整数,表示最小花费

Sample Input

4
2424
3142

Sample Output

9
样例解释
选取牧场1,3,4建立控制站,最小费用为2+(2+1*1)+4=9。
1<=n<=1000000, 0 < a i ,bi < = 10000

HINT

 

Source

KpmCup#0 By Greens

正着推和bzoj1096类似 有点麻烦http://www.cnblogs.com/wsy01/p/8119725.html

我们考虑反着来做 
假设只在n建立一个控制站 可以算出总花费 sum(b[i]*(n-i))
然后考虑 减去最多可以节省的花费
这个最多可以节省的花费可以这样算
f[i]表示在i建立一个控制站节省的最大代价
f[i]=f[j]-a[i]-sum[i]*(j-i) j>i
然后斜率优化。。
懒得写了

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<queue>
#define ll long long
#define inf 9000000000000000000
#define MAX 1000000000000000000LL
using namespace std;
int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n;
int l=,r;
ll a[],b[];
int q[];
ll tot,ans,f[],sum[];
double cal(int j,int k)
{
return (double)(f[k]-f[j])/(double)(j-k);
}
int main()
{
n=read();
for(int i=;i<=n;i++)a[i]=read();
for(int i=;i<=n;i++)b[i]=read();
for(int i=;i<=n;i++)sum[i]=sum[i-]+b[i];
for(int i=;i<n;i++)
tot+=b[i]*(n-i);
tot+=a[n];
q[++r]=n;
for(int i=n-;i;i--)
{
while(l<r&&cal(q[l],q[l+])>sum[i])l++;
int j=q[l];
f[i]=f[j]+sum[i]*(j-i)-a[i];
ans=max(ans,f[i]);
while(l<r&&cal(q[r],i)>cal(q[r-],q[r]))r--;
q[++r]=i;
}
printf("%lld",tot-ans);
return ;
}

bzoj3437小P的牧场 斜率优化dp的更多相关文章

  1. BZOJ3437:小P的牧场(斜率优化DP)

    Description 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制 ...

  2. 【bzoj3437】小P的牧场 斜率优化dp

    题目描述 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个 ...

  3. BZOJ 3437: 小P的牧场 斜率优化DP

    3437: 小P的牧场 Description 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场 ...

  4. bzoj3427小P的牧场(斜率优化dp)

    小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制站控制的牧场是它所在的牧 ...

  5. 【BZOJ3437】小P的牧场 斜率优化

    [BZOJ3437]小P的牧场 Description 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这 ...

  6. bzoj 3437: 小P的牧场 -- 斜率优化

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MB Description 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号), ...

  7. BZOJ3437 小P的牧场 动态规划 斜率优化

    原文链接http://www.cnblogs.com/zhouzhendong/p/8696321.html 题目传送门 - BZOJ3437 题意 给定两个序列$a,b$,现在划分$a$序列. 被划 ...

  8. bzoj3437小P的牧场

    bzoj3437小P的牧场 题意: n个牧场,在每个牧场见控制站的花费为ai,在该处建控制站能控制从此处到左边第一个控制站(或边界)之间的牧场.一个牧场被控制的花费等于它到控制它的控制站之间的牧场数目 ...

  9. bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)

    题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...

随机推荐

  1. 在linux中关闭防火墙

    1) 重启后生效 开启: chkconfig iptables on 关闭: chkconfig iptables off 2) 即时生效,重启后失效 开启: service iptables sta ...

  2. PHP环境手动搭建wamp-----Apache+MySQL+PHP

    首先下载分别下载Apache+MySQL+PHP. 然后分别解压到文件夹中. 1.安装Apache 1)检查80端口是否占用 说明:apache软件占用80软件,在计算机中一个端口只能被一个软件占用 ...

  3. MongoDb进阶实践之五 MongoDB修改命令详述

    一.引言         上一篇文章我们已经详细介绍了MongoDB数据库的有关查询的内容,但是这只是所有查询命令的冰山一角.所有查询命令都写完也没有必要,我只是写了一些常用的命令,对MongoDB的 ...

  4. pymysql安装和使用

    一.pymysql安装 安装mymysql前请确认python环境已经准备好,在之前的博文http://www.cnblogs.com/newzol/p/8682176.html有说明pythonwe ...

  5. New UWP Community Toolkit - RotatorTile

    概述 UWP Community Toolkit  中有一个为图片或磁贴提供轮播效果的控件 - RotatorTile,本篇我们结合代码详细讲解  RotatorTile 的实现. RotatorTi ...

  6. Mego开发文档 - 复杂查询

    复杂查询 Mego 还支持一些更高级的LLINQ查询写法,本文只列出一部分. 分组汇总查询 using (var db = new OrderManageEntities()) { var query ...

  7. plsql启动提示监听服务无法连接

    话说现在用的oracle少了,本人菜鸟一个,但是我真心的没有感觉到它用的少了,今天入了一个新项目,数据库使用的还是oracle,经理二话不说的给了一些东西,说了让一句你把环境啥地 配置一下,然后走人了 ...

  8. 05_Linux目录文件操作命令2_我的Linux之路

    这一节我们继续来学习Linux中对文件和目录的操作命令 mkdir 创建目录 mkdir (选项)(参数) 在Linux端可以使用mkdir来创建目录,如果你没有加其他的路径名,那么默认是在当前目录下 ...

  9. Mysql官方文档翻译系列-7.3.1 Establishing a Backup Policy

    原文链接 (https://dev.mysql.com/doc/refman/5.7/en/backup-policy.html) 正文 To be useful, backups must be s ...

  10. GET和POST两种基本请求方法的区别

    文章来源:http://www.cnblogs.com/logsharing/p/8448446.html GET和POST是HTTP请求的两种基本方法,要说它们的区别,接触过WEB开发的人都能说出一 ...