[Uva10601]Cubes
[Uva10601]Cubes
标签: 置换 burnside引理
题意
给你12跟长度相同的小木棍,每个小木棍有一个颜色。统计他们能拼成多少种不同的立方体。旋转后相同的立方体认为是相同的。
题解
这道题难就难在他不告诉你正方体是怎么旋转的,所以只要把这个想清楚了这道题就不是很难。
有三种旋转方式:
以一个面与其对面的中心为轴旋转。这个可以旋转90,180,270度。
以一条棱与其对棱的中心为轴旋转。只能旋转180度。
以一个点与其对点的中心为轴旋转。能旋转120和240度。(其实就是以这个点为端点的边在旋转)
然后就可以弄一个6维背包来求了(虽然组合数也可以,但是6维背包难道不更爽一些吗?)
Code
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<set>
#include<queue>
#include<map>
#include<stack>
#include<vector>
using namespace std;
#define ll long long
#define REP(i,a,b) for(int i=(a),_end_=(b);i<=_end_;i++)
#define DREP(i,a,b) for(int i=(a),_end_=(b);i>=_end_;i--)
#define EREP(i,a) for(int i=start[(a)];i;i=e[i].next)
inline int read()
{
int sum=0,p=1;char ch=getchar();
while(!(('0'<=ch && ch<='9') || ch=='-'))ch=getchar();
if(ch=='-')p=-1,ch=getchar();
while('0'<=ch && ch<='9')sum=sum*10+ch-48,ch=getchar();
return sum*p;
}
int cnt[7];
int dp[13][13][13][13][13][13];
ll ans=0;
void init()
{
memset(cnt,0,sizeof(cnt));
REP(i,1,12)cnt[read()]++;
ans=0;
}
int w[100],Cnt;
void Dp()
{
REP(a,0,cnt[1])REP(b,0,cnt[2])REP(c,0,cnt[3])REP(d,0,cnt[4])REP(e,0,cnt[5])REP(f,0,cnt[6])dp[a][b][c][d][e][f]=0;
dp[0][0][0][0][0][0]=1;
REP(l,1,Cnt)
{
DREP(a,cnt[1],0)
{
DREP(b,cnt[2],0)
{
DREP(c,cnt[3],0)
{
DREP(d,cnt[4],0)
{
DREP(e,cnt[5],0)
{
DREP(f,cnt[6],0)
{
if(a>=w[l])dp[a][b][c][d][e][f]+=dp[a-w[l]][b][c][d][e][f];
if(b>=w[l])dp[a][b][c][d][e][f]+=dp[a][b-w[l]][c][d][e][f];
if(c>=w[l])dp[a][b][c][d][e][f]+=dp[a][b][c-w[l]][d][e][f];
if(d>=w[l])dp[a][b][c][d][e][f]+=dp[a][b][c][d-w[l]][e][f];
if(e>=w[l])dp[a][b][c][d][e][f]+=dp[a][b][c][d][e-w[l]][f];
if(f>=w[l])dp[a][b][c][d][e][f]+=dp[a][b][c][d][e][f-w[l]];
}
}
}
}
}
}
}
}
void doing()
{
Cnt=12;
REP(i,1,12)w[i]=1;
Dp();
ans+=dp[cnt[1]][cnt[2]][cnt[3]][cnt[4]][cnt[5]][cnt[6]];
Cnt=3;
REP(i,1,3)w[i]=4;
Dp();
ans+=6*dp[cnt[1]][cnt[2]][cnt[3]][cnt[4]][cnt[5]][cnt[6]];
Cnt=6;
REP(i,1,6)w[i]=2;
Dp();
ans+=3*dp[cnt[1]][cnt[2]][cnt[3]][cnt[4]][cnt[5]][cnt[6]];
Cnt=4;
REP(i,1,4)w[i]=3;
Dp();
ans+=8*dp[cnt[1]][cnt[2]][cnt[3]][cnt[4]][cnt[5]][cnt[6]];
Cnt=7;
w[1]=1;w[2]=1;
REP(i,3,7)w[i]=2;
Dp();
ans+=6*dp[cnt[1]][cnt[2]][cnt[3]][cnt[4]][cnt[5]][cnt[6]];
cout<<ans/24<<endl;
}
int main()
{
int t=read();
while(t)
{
t--;
init();
doing();
}
return 0;
}
[Uva10601]Cubes的更多相关文章
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- 「算法笔记」Polya 定理
一.前置概念 接下来的这些定义摘自 置换群 - OI Wiki. 1. 群 若集合 \(s\neq \varnothing\) 和 \(S\) 上的运算 \(\cdot\) 构成的代数结构 \((S, ...
- 水泡动画模拟(Marching Cubes)
Marching Cubes算法是三维离散数据场中提取等值面的经典算法,其主要应用于医学领域的可视化场景,例如CT扫描和MRI扫描的3D重建等. 算法主要的思想是在三维离散数据场中通过线性插值来逼近等 ...
- Codeforces525E Anya and Cubes(双向搜索)
题目 Source http://codeforces.com/contest/525/problem/E Description Anya loves to fold and stick. Toda ...
- [saiku] 系统登录成功后查询Cubes
一.系统启动时初始化ds和conn 1.查询出目前系统拥有的Datasources和Connections放入内存中 2.比对saiku-datasources中的ds是否有新增的,如果有,创建新的d ...
- UVa 10601 (Polya计数 等价类计数) Cubes
用6种颜色去染正方体的12条棱,但是每种颜色都都限制了使用次数. 要确定正方体的每一条棱,可以先选择6个面之一作为顶面,然后剩下的四个面选一个作为前面,共有24种. 所以正方体的置换群共有24个置换. ...
- poj 1543 Perfect Cubes(注意剪枝)
Perfect Cubes Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 14901 Accepted: 7804 De ...
- OpenJudge 2810(1543) 完美立方 / Poj 1543 Perfect Cubes
1.链接地址: http://bailian.openjudge.cn/practice/2810/ http://bailian.openjudge.cn/practice/1543/ http:/ ...
- 组合数学(Pólya计数原理):UvaOJ 10601 Cubes
Cubes You are given 12 rods of equal length. Each of them is colored in certain color. Your task is ...
随机推荐
- destoon 开启邮箱
- ecshop_标签大全
admin 后台功能 -------templates后台模板 data 上传文件.SQL备份文件.配置项 ------sqldata 数据库备份文件 ------config.php配置文件 inc ...
- java基础学习总结——java读取properties文件总结
摘录自:http://www.cnblogs.com/xdp-gacl/p/3640211.html 一.java读取properties文件总结 在java项目中,操作properties文件是经常 ...
- 使用WinDbg获取SSDT函数表对应的索引再计算得出地址
当从Ring3进入Ring0的时候会将所需要的SSDT索引放入到寄存器EAX中去,所以我们这里通过EAX的内容得到函数在SSDT中的索引号,然后计算出它的地址首先打开WinDbug,我们以函数ZwQu ...
- 2017-06-25(常用快捷键 history 用户及用户组)
常用快捷键 ctrl+l 清屏 (与clear命令功能相似) ctrl+c 强制终止当前命令 crtl+a 光标移到命令行首 crtl+e 光标移到命令行尾 ctrl+u 从光标所在位置删除至行首 c ...
- Web Magic 简介
WebMagic in Action Little book of WebMagic. WebMagic是我业余开发的一款简单灵活的爬虫框架.基于它你可以很容易的编写一个爬虫. 这本小书以WebMag ...
- 在 Tomcat 上配置虚拟主机
.Tomcat 服务器的server.xml文件 (1)Tomcat 组件 Tomcat服务器是由一系列可配置的组件构成,其中核心组件是 Catalina Servlet 容器,它是所有其他 To ...
- android imageview按钮按下动画效果
private ImageView today_eat: today_eat = (ImageView) view.findViewById(R.id.today_eat); today_eat.se ...
- python --- 基础多线程编程
在python中进行多线程编程之前必须了解的问题: 1. 什么是线程? 答:线程是程序中一个单一的顺序控制流程.进程内一个相对独立的.可调度的执行单元,是系统独立调度和分派CPU的基本单位指运行中的程 ...
- Python selenium 一个节点两个关联input
HTML代码: 一个节点两个关联input 多出现于密码框 先需要模拟点击进入第一个input,才能激活第二个input. 代码: driver.find_element_by_name('Text ...