[Uva10601]Cubes

标签: 置换 burnside引理


题意

给你12跟长度相同的小木棍,每个小木棍有一个颜色。统计他们能拼成多少种不同的立方体。旋转后相同的立方体认为是相同的。

题解

这道题难就难在他不告诉你正方体是怎么旋转的,所以只要把这个想清楚了这道题就不是很难。

有三种旋转方式:

以一个面与其对面的中心为轴旋转。这个可以旋转90,180,270度。

以一条棱与其对棱的中心为轴旋转。只能旋转180度。

以一个点与其对点的中心为轴旋转。能旋转120和240度。(其实就是以这个点为端点的边在旋转)

然后就可以弄一个6维背包来求了(虽然组合数也可以,但是6维背包难道不更爽一些吗?)

Code

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<set>
#include<queue>
#include<map>
#include<stack>
#include<vector>
using namespace std;
#define ll long long
#define REP(i,a,b) for(int i=(a),_end_=(b);i<=_end_;i++)
#define DREP(i,a,b) for(int i=(a),_end_=(b);i>=_end_;i--)
#define EREP(i,a) for(int i=start[(a)];i;i=e[i].next)
inline int read()
{
int sum=0,p=1;char ch=getchar();
while(!(('0'<=ch && ch<='9') || ch=='-'))ch=getchar();
if(ch=='-')p=-1,ch=getchar();
while('0'<=ch && ch<='9')sum=sum*10+ch-48,ch=getchar();
return sum*p;
} int cnt[7];
int dp[13][13][13][13][13][13];
ll ans=0;
void init()
{
memset(cnt,0,sizeof(cnt));
REP(i,1,12)cnt[read()]++;
ans=0;
} int w[100],Cnt; void Dp()
{
REP(a,0,cnt[1])REP(b,0,cnt[2])REP(c,0,cnt[3])REP(d,0,cnt[4])REP(e,0,cnt[5])REP(f,0,cnt[6])dp[a][b][c][d][e][f]=0;
dp[0][0][0][0][0][0]=1;
REP(l,1,Cnt)
{
DREP(a,cnt[1],0)
{
DREP(b,cnt[2],0)
{
DREP(c,cnt[3],0)
{
DREP(d,cnt[4],0)
{
DREP(e,cnt[5],0)
{
DREP(f,cnt[6],0)
{
if(a>=w[l])dp[a][b][c][d][e][f]+=dp[a-w[l]][b][c][d][e][f];
if(b>=w[l])dp[a][b][c][d][e][f]+=dp[a][b-w[l]][c][d][e][f];
if(c>=w[l])dp[a][b][c][d][e][f]+=dp[a][b][c-w[l]][d][e][f];
if(d>=w[l])dp[a][b][c][d][e][f]+=dp[a][b][c][d-w[l]][e][f];
if(e>=w[l])dp[a][b][c][d][e][f]+=dp[a][b][c][d][e-w[l]][f];
if(f>=w[l])dp[a][b][c][d][e][f]+=dp[a][b][c][d][e][f-w[l]];
}
}
}
}
}
}
}
} void doing()
{
Cnt=12;
REP(i,1,12)w[i]=1;
Dp();
ans+=dp[cnt[1]][cnt[2]][cnt[3]][cnt[4]][cnt[5]][cnt[6]]; Cnt=3;
REP(i,1,3)w[i]=4;
Dp();
ans+=6*dp[cnt[1]][cnt[2]][cnt[3]][cnt[4]][cnt[5]][cnt[6]]; Cnt=6;
REP(i,1,6)w[i]=2;
Dp();
ans+=3*dp[cnt[1]][cnt[2]][cnt[3]][cnt[4]][cnt[5]][cnt[6]]; Cnt=4;
REP(i,1,4)w[i]=3;
Dp();
ans+=8*dp[cnt[1]][cnt[2]][cnt[3]][cnt[4]][cnt[5]][cnt[6]]; Cnt=7;
w[1]=1;w[2]=1;
REP(i,3,7)w[i]=2;
Dp();
ans+=6*dp[cnt[1]][cnt[2]][cnt[3]][cnt[4]][cnt[5]][cnt[6]]; cout<<ans/24<<endl;
}
int main()
{
int t=read();
while(t)
{
t--;
init();
doing();
}
return 0;
}

[Uva10601]Cubes的更多相关文章

  1. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  2. 「算法笔记」Polya 定理

    一.前置概念 接下来的这些定义摘自 置换群 - OI Wiki. 1. 群 若集合 \(s\neq \varnothing\) 和 \(S\) 上的运算 \(\cdot\) 构成的代数结构 \((S, ...

  3. 水泡动画模拟(Marching Cubes)

    Marching Cubes算法是三维离散数据场中提取等值面的经典算法,其主要应用于医学领域的可视化场景,例如CT扫描和MRI扫描的3D重建等. 算法主要的思想是在三维离散数据场中通过线性插值来逼近等 ...

  4. Codeforces525E Anya and Cubes(双向搜索)

    题目 Source http://codeforces.com/contest/525/problem/E Description Anya loves to fold and stick. Toda ...

  5. [saiku] 系统登录成功后查询Cubes

    一.系统启动时初始化ds和conn 1.查询出目前系统拥有的Datasources和Connections放入内存中 2.比对saiku-datasources中的ds是否有新增的,如果有,创建新的d ...

  6. UVa 10601 (Polya计数 等价类计数) Cubes

    用6种颜色去染正方体的12条棱,但是每种颜色都都限制了使用次数. 要确定正方体的每一条棱,可以先选择6个面之一作为顶面,然后剩下的四个面选一个作为前面,共有24种. 所以正方体的置换群共有24个置换. ...

  7. poj 1543 Perfect Cubes(注意剪枝)

    Perfect Cubes Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14901   Accepted: 7804 De ...

  8. OpenJudge 2810(1543) 完美立方 / Poj 1543 Perfect Cubes

    1.链接地址: http://bailian.openjudge.cn/practice/2810/ http://bailian.openjudge.cn/practice/1543/ http:/ ...

  9. 组合数学(Pólya计数原理):UvaOJ 10601 Cubes

    Cubes You are given 12 rods of equal length. Each of them is colored in certain color. Your task is ...

随机推荐

  1. java开发都需要学什么

    1.java基础 2.JSP+Servlet+JavaBean 环节主要 懂流程 MVC而已 别往深了研究 现 开发基本 用 模式 3.Struts+Hibernate+Spring 才 开发 主流技 ...

  2. CSS3总结学习(一):CSS3用户界面

    在CSS3中,新的用户界面属性有很多,本文重点介绍resize,box-sizing,offset. 浏览器支持,如下图,图片源于W3school 1.CSS Resizing 在css3,resiz ...

  3. start tomcat with debugging mode

    For this, you must run your application in debug mode, which requires below parameters. -Xdebug -Xru ...

  4. Laravel添加代码自动提示功能

    在使用Laravel框架的时候,可能会碰上代码无法自动提示的情况,那么如何添加自动提示功能呢? 1,首先在composer.json中加入以下内容: "require": { &q ...

  5. 反应堆模式(reactor)

    在提到高性能服务器编程的时候肯定有听过reactor模式,如果只是简单的写一个服务器和客户端建立连接的程序来熟悉一下使用socket函数编程,一般这种情况都是同步方式实现的,服务器阻塞等待客户端的连接 ...

  6. node 在控制台打印有色彩的输出

    在学习 node 过程中,因为没有找到有断点的调试方法,只能退而次之,在控制台打印调试. 但整个控制台的输出都是一种颜色,有时候很难找到自己需要的信息,这时,有颜色的打印就会帮上很大的忙. conso ...

  7. GTID复制详解

    前言 GTID复制是MySQL 5.6后的新功能,在传统的方式里,主从切换后,需要找到binlog和POS点,然后执行命令change master to 指向新的主库.对于不是很有经验的人来说,往往 ...

  8. Python selenium 一个节点两个关联input

    HTML代码: 一个节点两个关联input  多出现于密码框 先需要模拟点击进入第一个input,才能激活第二个input. 代码: driver.find_element_by_name('Text ...

  9. centos7添加图像化桌面并设置中文

    我前面是使用的centos6.最近才最小化安装了一个centos7.4(最小化安装有很多命令都没有,所以不建议这样干).完了装了图形化界面和设置中文,感觉和centos6有些区别,所以记录一下过程. ...

  10. chrome disable-web-security 关闭安全策略 解决跨域

    Chrome 跨域访问线上接口 时间:2016-04-21 作者:zhongxia 前后端分离之后,联调的时候就会出现问题,那就是Ajax跨域问题. 跨域问题的解决方案有很多种比如常规的 后端使用CR ...