题面

Bzoj

Sol

两个串拼在一起后求出后缀数组

然后显然的\(n^2\)暴力,就是直接枚举求\(LCP\)

又由于扫的时候是对\(height\)取\(min\)

那么可以用单调栈维护每一段的贡献相同的

# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(4e5 + 5); int n, a[_], is[_], rk[_], sa[_], height[_], tmp[_], t[_];
int S[_], top, s1[_], s2[_];
ll ans, sum[_];
char ss[_]; IL int Cmp(RG int i, RG int j, RG int k){
return tmp[i] == tmp[j] && tmp[i + k] == tmp[j + k] && i + k <= n && j + k <= n;
} IL void Suffix_Sort(){
RG int m = 27;
for(RG int i = 1; i <= n; ++i) ++t[rk[i] = a[i]];
for(RG int i = 1; i <= m; ++i) t[i] += t[i - 1];
for(RG int i = n; i; --i) sa[t[rk[i]]--] = i;
for(RG int k = 1; k <= n; k <<= 1){
RG int l = 0;
for(RG int i = n - k + 1; i <= n; ++i) tmp[++l] = i;
for(RG int i = 1; i <= n; ++i) if(sa[i] > k) tmp[++l] = sa[i] - k;
for(RG int i = 0; i <= m; ++i) t[i] = 0;
for(RG int i = 1; i <= n; ++i) ++t[rk[tmp[i]]];
for(RG int i = 1; i <= m; ++i) t[i] += t[i - 1];
for(RG int i = n; i; --i) sa[t[rk[tmp[i]]]--] = tmp[i];
swap(rk, tmp), rk[sa[1]] = l = 1;
for(RG int i = 2; i <= n; ++i) rk[sa[i]] = Cmp(sa[i - 1], sa[i], k) ? l : ++l;
if(l >= n) break;
m = l;
}
for(RG int i = 1, h = 0; i <= n; ++i){
if(h) --h;
while(a[i + h] == a[sa[rk[i] - 1] + h]) ++h;
height[rk[i]] = h;
}
} int main(RG int argc, RG char* argv[]){
scanf(" %s", ss);
for(RG int i = 0, len = strlen(ss); i < len; ++i) a[++n] = ss[i] - 'a' + 1, is[n] = 1;
scanf(" %s", ss), a[++n] = 27;
for(RG int i = 0, len = strlen(ss); i < len; ++i) a[++n] = ss[i] - 'a' + 1, is[n] = 2;
Suffix_Sort();
for(RG int i = 1; i < n; ++i)
s1[i] = s1[i - 1] + (is[sa[i]] == 1), s2[i] = s2[i - 1] + (is[sa[i]] == 2);
S[0] = 1;
for(RG int i = 1; i < n; ++i){
while(top && height[S[top]] > height[i]) --top;
S[++top] = i, sum[top] = sum[top - 1] + (s1[i - 1] - s1[S[top - 1] - 1]) * height[i];
if(is[sa[i]] == 2) ans += sum[top];
}
top = 0;
for(RG int i = 1; i < n; ++i){
while(top && height[S[top]] > height[i]) --top;
S[++top] = i, sum[top] = sum[top - 1] + (s2[i - 1] - s2[S[top - 1] - 1]) * height[i];
if(is[sa[i]] == 1) ans += sum[top];
}
printf("%lld\n", ans);
return 0;
}

Bzoj4566:[HAOI2016]找相同字符的更多相关文章

  1. BZOJ4566 [Haoi2016]找相同字符【SAM】

    BZOJ4566 [Haoi2016]找相同字符 给定两个字符串\(s和t\),要求找出两个字符串中所有可以相互匹配的子串对的数量 首先考虑可以怎么做,我们可以枚举\(t\)串的前缀\(t'\),然后 ...

  2. [BZOJ4566][Haoi2016]找相同字符 后缀自动机+dp

    4566: [Haoi2016]找相同字符 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 1212  Solved: 694[Submit][Stat ...

  3. [Bzoj4566][Haoi2016]找相同字符(广义后缀自动机)

    4566: [Haoi2016]找相同字符 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 861  Solved: 495[Submit][Statu ...

  4. BZOJ4566 [Haoi2016]找相同字符 字符串 SAM

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ4566.html 题目传送门 - BZOJ4566 题意 给定两个字符串 $s1$ 和 $s2$ ,问有 ...

  5. BZOJ4566: [Haoi2016]找相同字符

    Description 给定两个字符串,求出在两个字符串中各取出一个子串使得这两个子串相同的方案数.两个方案不同当且仅当这两 个子串中有一个位置不同. Input 两行,两个字符串s1,s2,长度分别 ...

  6. BZOJ4566: [Haoi2016]找相同字符(后缀自动机)

    题意 题目链接 Sol 直接在SAM上乱搞 枚举前缀,用SAM统计可以匹配的后缀,具体在匹配的时候维护和当前节点能匹配的最大值 然后再把parent树上的点的贡献也统计上,这部分可以爆跳parent树 ...

  7. BZOJ4566 Haoi2016 找相同字符【广义后缀自动机】

    Description 给定两个字符串,求出在两个字符串中各取出一个子串使得这两个子串相同的方案数.两个方案不同当且仅当这两 个子串中有一个位置不同. Input 两行,两个字符串s1,s2,长度分别 ...

  8. BZOJ4566:[HAOI2016]找相同字符(SAM)

    Description 给定两个字符串,求出在两个字符串中各取出一个子串使得这两个子串相同的方案数.两个方案不同当且仅当这两 个子串中有一个位置不同. Input 两行,两个字符串s1,s2,长度分别 ...

  9. BZOJ4566 [Haoi2016]找相同字符 【后缀数组】

    题目 给定两个字符串,求出在两个字符串中各取出一个子串使得这两个子串相同的方案数.两个方案不同当且仅当这两 个子串中有一个位置不同. 输入格式 两行,两个字符串s1,s2,长度分别为n1,n2.1 & ...

  10. BZOJ4566 HAOI2016找相同字符(后缀自动机)

    对第一个串建SAM,第二个串在上面跑,记录当前前缀匹配的最长后缀长度l,每次考虑当前前缀的贡献,对于当前所在节点显然是|right|*(l-len[fa]),而对于其parent树上所有祖先的贡献显然 ...

随机推荐

  1. 从Myeclipse到Intelj Idea

    前言:经历了从eclipse到Myeclipse的时间,大学时候用Eclipse,开始工作的时候选择Myeclipse,都能体会到Java的IDE的先进和高明之处,直到最近,公司项目采git和Grad ...

  2. Redis Sentinel安装与部署,实现redis的高可用

    前言 对于生产环境,高可用是避免不了要面对的问题,无论什么环境.服务,只要用于生产,就需要满足高可用:此文针对的是redis的高可用. 接下来会有系列文章,该系列是对spring-session实现分 ...

  3. 可拖动布局之Gridster

    看过bootstrap可视化布局系统的人是不是都会对页面元素的拖拽有着很大的兴趣?下面呢,楼主就给大家讲两个楼主知道的拖拽小插件吧. 一.gridster 1.了解gridster 后续官网:http ...

  4. C#委托与事件--简单笔记

    委托 简单记录点东西 适合似懂非懂的朋友看看 委托类型用来定义和响应应用程序中的回调. 借此可以设计各种有面向对象特性的代码模式.下面要说的事件在我看来就是委托的一种实现,再深一步讲,利用委托加事件, ...

  5. Spring-mvc 静态资源不拦截

    在Spring-mvc.xml文件中加入这个就可以了 <!-- 用于对静态文件进行解析 --> <mvc:annotation-driven /> <mvc:resour ...

  6. Ecshop中transport和jquery不兼容的解决方案

    1.修改文件:/js/transport.js,在最底部增加代码 if (Object.prototype.toJSONString){ var oldToJSONString = Object.to ...

  7. Duilib第一步(I)-简介与环境搭建

    Primus gradus et cognoscetis veritatem et veritas liberabit vos.  --Johannes 8:32 Introduction Duili ...

  8. Flask從入門到入土(三)——模板

    模板是一個包含響應文本的文件,其中包含佔位變量表示的動態部分,其具體值只是請求上下文中才能知道.使用真實值替換變量,再返回最終得到的響應字符串,這一過程稱爲渲染.爲了渲染模板,Flask使用了一個名爲 ...

  9. Golang http 服务器

    package main import ( "net/http" "fmt" ) func main() { app := http.NewServeMux() ...

  10. 3.数码相框-通过freetype库实现矢量显示

    本章主要内容如下: 1)矢量字体原理 2)使用freetype库实现矢量字体显示 1. 矢量字体原理 将汉字的笔划边缘用直线段描述成封闭的曲线,并将线段各端点的坐标经压缩存储,如下图所示: 由于每个汉 ...