[Python]程序性能分析
有些脚本发现比预期要慢的多,就需要找到瓶颈,然后做相应的优化,参考A guide to analyzing Python performance,也可以说是翻译。
指标
- 运行时间
- 时间瓶颈
- 内存使用
- 是否有内存泄漏
基本
linux time
这是个shell中自带的命令,也是最简单和方面的方法,但是得到信息太少
[root@bogon util]# time python pvsts.py
Yesterday PV/UV
PV 46300
UV is 3899
real 2m36.591s #花费时间
user 2m37.167s #用户态时间
sys 0m2.010s #内核态时间
如果 sys
+user
比 real
小的多,就要考虑io等待时间是否过长了。
使用Cprofile工具
用起来很简单,显示的东西也很多,但是对于代码
来说不是很直观
[root@bogon util]# python -m cProfile pvsts.py
Yesterday PV/UV
PV 46300
UV is 3899
502249600 function calls (502249597 primitive calls) in 250.221 CPU seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 250.221 250.221 <string>:1(<module>)
1 0.000 0.000 0.000 0.000 __future__.py:48(<module>)
1 0.000 0.000 0.000 0.000 __future__.py:74(_Feature)
7 0.000 0.000 0.000 0.000 __future__.py:75(__init__)
1 0.000 0.000 0.000 0.000 __init__.py:49(normalize_encoding)
1 0.000 0.000 0.000 0.000 __init__.py:71(search_function)
1 0.000 0.000 0.000 0.000 base64.py:3(<module>)
测试时间工具line_profiler
就是这个小工具,安装很simple
$ pip install line_profiler
在想要测试的函数上添加一个 @profile
装饰器(不用倒入任何包,工具会自动倒入)
@profile
def sts_uv():
#mac_list = []
mac_set = set()
with open(temp_log, 'r') as f:
for line in f.readlines():
basid, mac, ip = decode_token(str(line.strip()))
#mac_list.append(mac)
mac_set.add(mac)
#uv = len(set(mac_list))
uv = len(mac_set)
print "UV is {0}".format(uv)
return uv
得到结果:
[root@bogon util]# kernprof -l -v pvsts.py
Yesterday PV/UV
PV 46300
UV is 3899
Wrote profile results to pvsts.py.lprof
Timer unit: 1e-06 s
Total time: 450.299 s
File: pvsts.py
Function: sts_uv at line 74
Line # Hits Time Per Hit % Time Line Contents
==============================================================
74 @profile
75 def sts_uv():
76 #mac_list = []
77 1 10 10.0 0.0 mac_set = set()
78 1 59 59.0 0.0 with open(temp_log, 'r') as f:
79 42431 38556 0.9 0.0 for line in f.readlines():
80 42430 450188794 10610.2 100.0 basid, mac, ip = decode_token(str(line.strip()))
81 #mac_list.append(mac)
82 42430 71491 1.7 0.0 mac_set.add(mac)
83 #uv = len(set(mac_list))
84 1 2 2.0 0.0 uv = len(mac_set)
85 1 15 15.0 0.0 print "UV is {0}".format(uv)
86 1 1 1.0 0.0 return uv
同时还是会生成一个pvsts.py.lprof
文件
测试内存使用 pip install -U memory_profiler
安装两个工具
$ pip install -U memory_profiler
$ pip install psutil
使用上也是添加一个 ‘@profile’ 装饰器,跟上面的一样。
测试
[root@bogon util]# python -m memory_profiler pvsts.py
Yesterday PV/UV
PV 46300
UV is 3899
Filename: pvsts.py
Line # Mem usage Increment Line Contents
================================================
74 9.676 MiB 0.000 MiB @profile
75 def sts_uv():
76 #mac_list = []
77 9.676 MiB 0.000 MiB mac_set = set()
78 9.676 MiB 0.000 MiB with open(temp_log, 'r') as f:
79 15.289 MiB 5.613 MiB for line in f.readlines():
80 15.289 MiB 0.000 MiB basid, mac, ip = decode_token(str(line.strip()))
81 #mac_list.append(mac)
82 15.289 MiB 0.000 MiB mac_set.add(mac)
83 #uv = len(set(mac_list))
84 14.961 MiB -0.328 MiB uv = len(mac_set)
85 14.961 MiB 0.000 MiB print "UV is {0}".format(uv)
86 14.961 MiB 0.000 MiB return uv
声明:
本文出自 “orangleliu笔记本” 博客,转载请务必保留此出处http://blog.csdn.net/orangleliu/article/details/45934005 作者orangleliu 采用署名-非商业性使用-相同方式共享协议
[Python]程序性能分析的更多相关文章
- Python程序性能分析模块----------cProfile
cProfile分析器可以用来计算程序整个运行时间,还可以单独计算每个函数运行时间,并且告诉你这个函数被调用多少次 def foo(): pass import cProfile cProfile.r ...
- python程序性能分析
中文:http://www.cnblogs.com/zhouej/archive/2012/03/25/2379646.html 英文:https://www.huyng.com/posts/pyth ...
- Linux下的应用程序性能分析 总结
Linux下的应用程序性能分析,根据内核程序和应用程序的不同,下文分两类进行描述. 我们侧重的是应用级别的程序,推荐google perf tool/kcachegrind组合 一.和内核有关的工具 ...
- Linux程序性能分析和火焰图
Linux程序性能分析和火焰图 Linux程序的性能分析工具数量比较多,涉及到整个操作系统的方方面面,可能是开源的原因吧,相对于Windows来说丰富太多.其中应用分析性能方面Dtrace, Syst ...
- 八、jdk工具之JvisualVM、JvisualVM之二--Java程序性能分析工具Java VisualVM
目录 一.jdk工具之jps(JVM Process Status Tools)命令使用 二.jdk命令之javah命令(C Header and Stub File Generator) 三.jdk ...
- Golang程序性能分析
前言 程序性能分析我相信是每个程序员都会遇到的问题,比如说一个程序的CPU为什么占用这么高?有没有优化的空间?又比如程序出现了内存泄漏如何排查等等.如果是C++程序会借助于Google pprof c ...
- 一个python 服务器程序性能分析
该服务器为bono,启动11个进程. 1.设置cprofile 在启动服务的总入口设置cprofile if __name__=="__main__": import cProfi ...
- 转帖:Python应用性能分析指南
原文:A guide to analyzing Python performance While it’s not always the case that every Python program ...
- [golang]7种 Go 程序性能分析方法
视频信息 Seven ways to Profile Go Applicationsby Dave Cheneyat Golang UK Conf. 2016 视频:https://www.youtu ...
随机推荐
- Blocks
Description solution 这题和之前做过的一题的一个套路非常类似:把不是更优的决策给去掉,使得序列变得具有单调性,分析这题: 发现如果两个右端点 \(i\),\(j\) 满足 \(su ...
- BZOJ1187 [HNOI2007]神奇游乐园(插头dp)
麻麻我会写插头dp了! 推荐陈丹琦论文:https://wenku.baidu.com/view/3e90d32b453610661ed9f4bd.html 破题调一年 #include <cs ...
- 数据权限管理中心 - 基于mybatis拦截器实现
数据权限管理中心 由于公司大部分项目都是使用mybatis,也是使用mybatis的拦截器进行分页处理,所以技术上也直接选择从拦截器入手 需求场景 第一种场景:行级数据处理 原sql: select ...
- 计科1702冯亚杰C语言程序设计预备作业
阅读邹欣老师的博客--师生关系,针对文中的几种师生关系谈谈你的看法,你期望的师生关系是什么样的? 答:首先老师和学生之间要互相尊重,我认为这是必要的.在第一点的基础上师生要互相帮助,互相配合,共同进步 ...
- Json数组删除
有一个json数组,{'people':[{'name':'jetty','sex':'男'},{'name':'lily','sex':'女'}]} 有一个json:var aa={'name':' ...
- break 与 continue
1.break ①只有一层循环时,作用是跳出循环语句,执行后面的代码. ②break存在于循环嵌套的内层循环时,只能跳出内层循环,如果想要跳出外层循环,需要对外层循环添加标记. 2.continue ...
- Missing URI template variable 'XXXX' for method parameter of type String
原因:就是spring的controller上的@RequestMapping的实参和方法里面的形参名字不一致 方法:改成一样就可. ps.还能用绑定的方法,不建议,因为太麻烦了 @RequestMa ...
- [ Java学习基础 ] Java异常处理
一.异常概述 异常是程序中的一些错误,但并不是所有的错误都是异常,并且错误有时候是可以避免的.比如说,你的代码少了一个分号,那么运行出来结果是提示是错误 java.lang.Error:如果你用Sys ...
- ABP文档笔记 - 配置、设置、版本、功能、权限
配置 全局仅一个单例,保存一组配置信息,一般直接在模块的预启动事件中赋值or修改.没有Scope划分,无论租户还是房东亦或者用户读取的值都不会有差异.每个模块都可以扩展这个配置. 设置 它没有层级关系 ...
- windows系统和centos双系统安装引导项修改
在CentOS下修改Linux引导文件: (1)找到win10的引导 1.首先我们点击第一个系统进入centos 2.运行终端,敲入命令su,为了获取管理员权限,然后终端提 ...