Description

魔术师的桌子上有n个杯子排成一行,编号为1,2,…,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯子,你就可以获得奖品。花费c_ij元,魔术师就会告诉你杯子i,i+1,…,j底下藏有球的总数的奇偶性。
采取最优的询问策略,你至少需要花费多少元,才能保证猜出哪些杯子底下藏着球?

Input

第一行一个整数n(1<=n<=2000)。
第i+1行(1<=i<=n)有n+1-i个整数,表示每一种询问所需的花费。其中c_ij(对区间[i,j]进行询问的费用,1<=i<=j<=n,1<=c_ij<=10^9)为第i+1行第j+1-i个数。

Output

输出一个整数,表示最少花费。

Sample Input

5
1 2 3 4 5
4 3 2 1
3 4 5
2 1
5

Sample Output

7

题解

求一棵最小生成树...

 //It is made by Awson on 2017.10.15
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define sqr(x) ((x)*(x))
using namespace std;
const int N = ;
const int INF = ~0u>>; int n, mp[N+][N+];
int dist[N+];
bool vis[N+]; LL Prim() {
LL ans = ;
for (int i = ; i <= n; i++) dist[i] = mp[][i];
vis[] = ;
for (int t = ; t < n; t++) {
int loc, minn = INF;
for (int i = ; i <= n; i++) if (!vis[i] && dist[i] < minn) {
minn = dist[i], loc = i;
}
ans += minn; vis[loc] = ;
for (int i = ; i <= n; i++) dist[i] = Min(dist[i], mp[loc][i]);
}
return ans;
}
void work() {
scanf("%d", &n); n++;
for (int i = ; i < n; i++) for (int j = i+; j <= n; j++) scanf("%d", &mp[i][j]), mp[j][i] = mp[i][j];
printf("%lld\n", Prim());
}
int main() {
work();
return ;
}

[PA 2014]Kuglarz的更多相关文章

  1. bzoj 3714 [ PA 2014 ] Kuglarz —— 思路+最小生成树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3714 因为每个杯子下最多一个小球,所以从奇偶性就可以看出有没有球: 询问一段区间,等于知道一 ...

  2. 【PA 2014】Kuglarz

    [题目链接]            点击打开链接 [算法]            sum[i]表示前i个杯子中,杯子底下藏有球的杯子总数            那么,知道[i,j]这段区间中,藏有球的 ...

  3. [PA 2014]Pakowanie

    Description 你有n个物品和m个包.物品有重量,且不可被分割:包也有各自的容量.要把所有物品装入包中,至少需要几个包? Input 第一行两个整数n,m(1<=n<=24,1&l ...

  4. [PA 2014]Lustra

    Description Byteasar公司专门外包生产带有镜子的衣柜.刚刚举行的招标会上,有n个工厂参加竞标.所有镜子都是长方形的,每个工厂能够制造的镜子都有其各自的最大.最小宽度和最大.最小高度. ...

  5. [PA 2014]Bohater

    Description 在一款电脑游戏中,你需要打败n只怪物(从1到n编号).为了打败第i只怪物,你需要消耗d[i]点生命值,但怪物死后会掉落血药,使你恢复a[i]点生命值.任何时候你的生命值都不能降 ...

  6. [PA 2014]Iloczyn

    Description 斐波那契数列的定义为:k=0或1时,F[k]=k:k>1时,F[k]=F[k-1]+F[k-2].数列的开头几项为0,1,1,2,3,5,8,13,21,34,55,…你 ...

  7. 解题:PA 2014 Bohater

    题面 我们把怪分成两类,打完了了能回血的和打完了不能回血的,然后分开打. 对于能回血的,我们先打攻击力低的,因为如果先打一个攻击力高的显然不一定能直接打过,所以先打一些攻击力低的回回血. 对于不能回血 ...

  8. 2014年第五届蓝桥杯C/C++程序设计本科B组决赛

    1.年龄巧合(枚举) 2.出栈次序(推公式/Catalan数) 3.信号匹配(kmp) 4.生物芯片(完全平方数) 5.Log大侠(线段树) 6.殖民地 1.年龄巧合 小明和他的表弟一起去看电影,有人 ...

  9. PA模块报错-实际返回的行数超出请求的行数(分析标准FORM报错解决思路)

    录入预算报错时报错: 分析:这个错误是select into 语句返回多行的结果,但具体在哪? 两种方法查找,trace 或者debug 1.trace 启用调试 获取trace文件 -bash-3. ...

随机推荐

  1. 【R语言系列】作图入门示例一

    假设有如下数据,我们使用plot函数作图 月龄 体重 月龄 体重  1 4.4 9 7.3 3 5.3 3 6.0 5 7.2 9 10.4 2 5.2 12 10.2 11 8.5 3 6.1 R语 ...

  2. servlet本质

    首先我们先要知道servlet是什么,这有两种解释.一是目前大多数人所说的,一个实现了servlet接口的类就可以叫作servlet.二,servlet只是一个接口.那么看起来这两点都和servlet ...

  3. C语言最后一次作业——总结报告

    1.当初你是如何做出选择计算机专业的决定的?经过一个学期,你的看法改变了么,为什么? 你觉得计算机是你喜欢的领域吗,它是你擅长的领域吗? 为什么? 首先是因为自己想学跟做动画沾边的专业(动画专业因为某 ...

  4. 团队作业7-Beta版本冲刺计划及安排

    a.下一阶段需要改进完善的功能 对部分bug的修改,主要是在未登录时页面跳转的问题以及防止通过对数据库进行注入查询. b.下一阶段新增的功能 1.活动页面,提示打折信息等. 2.商家修改打折信息 3. ...

  5. js中多维数组转一维

    法一:使用数组map()方法,对数组中的每一项运行给定函数,返回每次函数调用的结果组成的数组. var arr = [1,[2,[[3,4],5],6]]; function unid(arr){ v ...

  6. "双非"应届生校招如何获得大厂青睐?(内附技术岗超全求职攻略)

    写在前面的话 笔者从17年的2月份开始准备春招,其中遇到不少坑,也意识到自己走过的弯路.故写了这篇文章总结一番,本文适合主动学习的,对自己要学的课程不明确的,对面试有恐惧症的...等将来打算从事技术岗 ...

  7. 移动端300ms与点透总结

    300ms,主要发生在mobile 为啥会出现300ms延迟现象 浏览器想知道用户是否dobule tap(双击缩放) 下列情况不会出现300ms延迟 桌面浏览器 meta的viewport设置了us ...

  8. python全栈开发-常用模块的一些应用

    一.random模块详解 1.概述 首先我们看到这个单词是随机的意思,他在python中的主要用于一些随机数,或者需要写一些随机数的代码,下面我们就来整理他的一些用法 2.常用方法 1. random ...

  9. 基于dns搭建eureka集群

    eureka集群方案: 1.通常我们部署的eureka节点多于两个,根据实际需求,只需要将相邻节点进行相互注册(eureka节点形成环状),就达到了高可用性集群,任何一个eureka节点挂掉不会受到影 ...

  10. 高级控件 popwindow 与gridview的组合应用

    Gridview 的布局设置 <GridView android:layout_width="wrap_content" android:layout_height=&quo ...