【UNR #1】火车管理(主席树)
【UNR #1】火车管理(主席树)
好好的代码被 \(extra\ test\) 卡常了。。。我就放一个目前最快的版本吧。。。
题意简化:
有 \(n\) 个栈,\(m\) 次操作。
将 \(x\) 压入 \([l,r]\) 的栈中
将 \(l\) 的栈顶弹出
询问 \([l,r]\) 栈顶的和
\(n,m\leq 5\times 10^5\)
虽然最优解是神仙二叉树,我只会主席树的解法。。。
显然 \(1,3\) 操作用一棵线段树就够了,\(2\) 操作需要另外一棵主席树,并且在历史版本上修改。
\(Code\ Below:\)
#include <bits/stdc++.h>
using namespace std;
const int maxn=500000+10;
int n,m,k,a[maxn];
namespace IO{
#define gc() (iS==iT?(iT=(iS=ibuff)+fread(ibuff,1,SIZ,stdin),(iS==iT?EOF:*iS++)):*iS++)
const int SIZ=1<<21|1;
char *iS,*iT,ibuff[SIZ],obuff[SIZ],*oS=obuff,*oT=oS+SIZ-1,fu[110],c;int fr;
inline void out(){
fwrite(obuff,1,oS-obuff,stdout);
oS=obuff;
}
template <class T>
inline void read(T &x){
x=0;T y=1;
for(c=gc();(c>'9'||c<'0')&&c!='-';c=gc());
c=='-'?y=-1:x=(c&15);
for(c=gc();c>='0'&&c<='9';c=gc()) x=x*10+(c&15);
x*=y;
}
template <class T>
inline void print(T x,char text='\n'){
if(x<0) *oS++='-',x*=-1;
if(x==0) *oS++='0';
while(x) fu[++fr]=x%10+'0',x/=10;
while(fr) *oS++=fu[fr--];
*oS++=text;out();
}
}
struct President_Tree{
#define rt(x) PT.rt[x]
struct node{
int sum,lazy,ls,rs;
}t[maxn*80];
int rt[maxn],cnt;
inline void pushdown(int x){
if(t[x].lazy){
if(!t[x].ls) t[x].ls=++cnt;
if(!t[x].rs) t[x].rs=++cnt;
t[t[x].ls].sum=t[t[x].rs].sum=t[t[x].ls].lazy=t[t[x].rs].lazy=t[x].lazy;
t[x].lazy=0;
}
}
inline void update(int &x,int y,int L,int R,int C,int l,int r){
x=++cnt;
if(L <= l && r <= R){t[x].sum=t[x].lazy=C;return;}
pushdown(y);t[x].ls=t[y].ls;t[x].rs=t[y].rs;
int mid=(l+r)>>1;
if(L <= mid) update(t[x].ls,t[y].ls,L,R,C,l,mid);
if(R > mid) update(t[x].rs,t[y].rs,L,R,C,mid+1,r);
}
inline int query(int x,int l,int r,int k){
if(l == r) return t[x].sum;
pushdown(x);
int mid=(l+r)>>1;
if(k <= mid) return query(t[x].ls,l,mid,k);
else return query(t[x].rs,mid+1,r,k);
}
}PT;
struct Segment_Tree{
#define lson (rt<<1)
#define rson (rt<<1|1)
int sum[maxn<<2],lazy[maxn<<2];
inline void pushup(int rt){sum[rt]=sum[lson]+sum[rson];}
inline void pushdown(int rt,int len){
if(lazy[rt]){
sum[lson]=(len-(len>>1))*lazy[rt];
sum[rson]=(len>>1)*lazy[rt];
lazy[lson]=lazy[rson]=lazy[rt];
lazy[rt]=0;
}
}
inline void update(int L,int R,int C,int l,int r,int rt){
if(L <= l && r <= R){
sum[rt]=(r-l+1)*C;lazy[rt]=C;
return ;
}
pushdown(rt,r-l+1);
int mid=(l+r)>>1;
if(L <= mid) update(L,R,C,l,mid,lson);
if(R > mid) update(L,R,C,mid+1,r,rson);
pushup(rt);
}
inline int query(int L,int R,int l,int r,int rt){
if(L <= l && r <= R) return sum[rt];
pushdown(rt,r-l+1);
int mid=(l+r)>>1,ans=0;
if(L <= mid) ans+=query(L,R,l,mid,lson);
if(R > mid) ans+=query(L,R,mid+1,r,rson);
return ans;
}
}ST;
int main()
{
IO::read(n),IO::read(m),IO::read(k);
int op,l,r,x,y,lastans=0;
for(int i=1;i<=n;i++){
rt(i)=rt(i-1);
IO::read(op);
if(op==1){
IO::read(l),IO::read(r);
l=(l+k*lastans)%n+1;
r=(r+k*lastans)%n+1;
if(l>r) swap(l,r);
IO::print(lastans=ST.query(l,r,1,n,1));
}
if(op==2){
IO::read(l);
l=(l+k*lastans)%n+1;
x=PT.query(rt(i),1,n,l);
if(x){
y=PT.query(rt(x-1),1,n,l);
PT.update(rt(i),rt(i),l,l,y,1,n);
ST.update(l,l,a[y],1,n,1);
}
}
if(op==3){
IO::read(l),IO::read(r);
l=(l+k*lastans)%n+1;
r=(r+k*lastans)%n+1;
if(l>r) swap(l,r);
IO::read(x);a[i]=x;
PT.update(rt(i),rt(i),l,r,i,1,n);
ST.update(l,r,x,1,n,1);
}
}
return 0;
}
【UNR #1】火车管理(主席树)的更多相关文章
- UOJ#218. 【UNR #1】火车管理 线段树 主席树
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ218.html 题解 如果我们可以知道每次弹出栈之后新的栈顶是什么,那么我们就可以在一棵区间覆盖.区间求和 ...
- UNR #1 火车管理
很简单 用一个线段树维护 1.答案 2.当前栈顶是什么时候push进来的 然后用一棵以时间为版本的可持久化线段树维护每个操作之后第一个覆盖到他的操作是哪个 就可以了 询问直接在线段树上询问,修改在两棵 ...
- 【UNR #1】火车管理
题目描述 uoj 旗下有一个火车站,用来管理属于 uoj 的小火车. 火车站一共有 nn 条编号为 1,…,n1,…,n 的,只有一端的用来存放小火车的铁路,由于小火车特殊的构造,每条铁路可以停放无数 ...
- UOJ #218. 【UNR #1】火车管理
Description Solution 实际上添加问题就是一个线段树区间覆盖问题,打标记就好 对于弹栈操作比较难搞,实际上也就是一个历史查询,我们不需要保存栈中的每一个元素,我们通过查找历史状态就可 ...
- [bzoj3932][CQOI2015][任务查询系统] (主席树)
Description 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si ...
- POJ 2104&HDU 2665 Kth number(主席树入门+离散化)
K-th Number Time Limit: 20000MS Memory Limit: 65536K Total Submissions: 50247 Accepted: 17101 Ca ...
- bzoj 3932 [CQOI2015]任务查询系统(主席树)
Description 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分. 超级计算机中的任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si ...
- UOJ 218 火车管理
http://uoj.ac/problem/218 思路:建立一个可持久化线段树,代表这个位置的火车是哪辆,然后再弄一个线段树维护答案. 如果询问,直接询问线段树. 如果区间压入,直接在主席树上面压入 ...
- 【BZOJ3932】任务查询系统(主席树)
[BZOJ3923]任务查询系统(主席树) 题面 Description 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei ...
随机推荐
- week07 13.2 NewsPipeline之 二 News Fetcher - Xpath
我们使用Xpath来专门做一个scrapter 我们专门弄个文件夹 里面全部是 各个新闻源(CNN BBC等)的scraper来抓取网站的text内容 主要函数(就是传入text内容的那个url)然后 ...
- Ubuntu输入命令无效的问题
https://blog.csdn.net/u014797226/article/details/80800550?utm_source=blogxgwz2 Ubuntu启动时输入密码后,一直停留在登 ...
- CSS 图像
CSS 图像 <上一节下一节> 通过CSS可以控制图像的大小和对齐方式. 图像大小 虽然在HTML中,img标签有属性height.width设置高和宽,在工作中却使用得非常少,通常使用C ...
- 工艺CODE
- 《CSAPP》 可重定位目标文件格式
可重定位目标文件 ELF文件 ELF头以一个16字节的序列开始,这个序列描述了生成该文件的系统的字的大小和字节顺序.ELF头剩下的部分包含帮助链接器语法分析和解释目标文件的信息.其中包括ELF头的大小 ...
- POJ-2533.Longest Ordered Subsequence (LIS模版题)
本题大意:和LIS一样 本题思路:用dp[ i ]保存前 i 个数中的最长递增序列的长度,则可以得出状态转移方程dp[ i ] = max(dp[ j ] + 1)(j < i) 参考代码: # ...
- TZOJ 4602 高桥和低桥(二分或树状数组+二分)
描述 有个脑筋急转弯是这样的:有距离很近的一高一低两座桥,两次洪水之后高桥被淹了两次,低桥却只被淹了一次,为什么?答案是:因为低桥太低了,第一次洪水退去之后水位依然在低桥之上,所以不算“淹了两次”.举 ...
- Linux-目录结构及文件系统
1.Linux 系统的顶层目录结构 / 根目录 ├── bin 存放用户二进制文件 ├── boot 存放内核引导配置文件 ├── dev 存放设备文件 ...
- Codeforces Round #436 (Div. 2)C. Bus 模拟
C. Bus time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard input out ...
- Linux环境下java开发环境搭建二 tomcat搭建
第一步:下载安装包并解压 # tar zxvf 压缩包名 第二步:把解压出的文件移动到/usr/local/tomcat7中 #mv 解压出来的文件夹 /usr/local/tomcat7 第三步: ...