From the offical code:

class TimeDistributed(Wrapper):
"""This wrapper applies a layer to every temporal slice of an input.
The input should be at least 3D, and the dimension of index one
will be considered to be the temporal dimension.
Consider a batch of 32 samples,
where each sample is a sequence of 10 vectors of 16 dimensions.
The batch input shape of the layer is then `(32, 10, 16)`,
and the `input_shape`, not including the samples dimension, is `(10, 16)`.
You can then use `TimeDistributed` to apply a `Dense` layer
to each of the 10 timesteps, independently:
```python
# as the first layer in a model
model = Sequential()
model.add(TimeDistributed(Dense(8), input_shape=(10, 16)))
# now model.output_shape == (None, 10, 8)
```
The output will then have shape `(32, 10, 8)`.
In subsequent layers, there is no need for the `input_shape`:
```python
model.add(TimeDistributed(Dense(32)))
# now model.output_shape == (None, 10, 32)
```
The output will then have shape `(32, 10, 32)`.
`TimeDistributed` can be used with arbitrary layers, not just `Dense`,
for instance with a `Conv2D` layer:
```python
model = Sequential()
model.add(TimeDistributed(Conv2D(64, (3, 3)),
input_shape=(10, 299, 299, 3)))
```
# Arguments
layer: a layer instance.

So - basically the   TimeDistributedDense was introduced first in early versions of Keras in order to apply a  Dense layer stepwise to sequences.   TimeDistributed is a Keras wrapper which makes possible to get any static (non-sequential) layer and apply it in a sequential manner. An example of such usage might be using a e.g. pretrained convolutional layer to a short video clip by applying   TimeDistributed(conv_layer)  where  conv_layer   is applied to each frame of a clip. It produces the sequence of outputs which might be then consumed by next recurrent or   TimeDistributed  layer.

It's good to know that usage of   TimeDistributedDense is depreciated and it's better to use   TimeDistributed(Dense)  .

TimeDistributed

RNNs are capable of a number of different types of input / output combinations, as seen below

The  TimeDistributedDense  layer allows you to build models that do the one-to-many and many-to-many architectures. This is because the output function for each of the "many" outputs must be the same function applied to each timestep. The  TimeDistributedDense  layers allows you to apply that Dense function across every output over time. This is important because it needs to be the same dense function applied at every time step.

If you didn't not use this, you would only have one final output - and so you use a normal dense layer. This means you are doing either a one-to-one or a many-to-one network, since there will only be one dense layer for the output.

======================================================

As fchollet said ,
TimeDistributedDense applies a same Dense (fully-connected) operation to every timestep of a 3D tensor.

But I think you still don't catch the point. The most common scenario for using TimeDistributedDense is using a recurrent NN for tagging task.e.g. POS labeling or slot filling task.

In this kind of task:
For each sample, the input is a sequence (a1,a2,a3,a4...aN) and the output is a sequence (b1,b2,b3,b4...bN) with the same length. bi could be viewed as the label of ai.
Push a1 into a recurrent nn to get output b1. Than push a2 and the hidden output of a1 to get b2...

If you want to model this by Keras, you just need to used a TimeDistributedDense after a RNN or LSTM layer(with return_sequence=True) to make the cost function is calculated on all time-step output. If you don't use TimeDistributedDense ans set the return_sequence of RNN=False, then the cost is calculated on the last time-step output and you could only get the last bN.

I am also new to Keras, but I am trying to use it to do sequence labeling and I find this could only be done by using TimeDistributedDense. If I make something wrong, please correct me.

======================================================

It's quite easy to understand . Let's not think in terms of tensors and stuffs for a sec.

It all depends upon the "return_sequences" parameter of the LSTM function.
if return_sequence = false ( by default , it's always false ), then we get LSTM output corresponding only to THE LAST TIME STEP.
Now applying model.add(Dense( )) , what we are doing is connecting only LSTM output at last time step to Dense Layer. (This approach is in encoding the overall sequence into a compact vector .
Now given a sequence of 50 words , my LSTM will only output only one word )

Ques) WHEN NOT TO USE TIMEDISTRIBUTED ?
Ans) In my experience, for encoder decoder model.
if you want to squeeze all your input information into a single vector, we DONT use TIMEDISTRIBUTED.
Only final unrolled layer of LSTM layer will be the output. This final layer will holder the compact information of whole input sequence which is useful for task like classification , summarization etc.
-----------------------------------------------------------However !-----------------------------------------------------------------------

If return_sequence is set True , LSTM outputs at every time step . So , I must use TimeDistributed to ensure that the Dense layer is connected to LSTM output at each TimeStep. Otherwise , error occurs !
Also keep in mind , just like lstm is unrolled , so is the dense layer . i.e dense layer at each time step is the same one . It's not like there are 50 different dense layer for 50 time steps.
There's nothing to get confused.
This time , model will generate a sequence corresponding to length of Timestep. So, given set of 50 input word , LSTM will output 50 output word

Q) WHEN TO USE TIMEDISTRIBUTED ?
A) In case of word generation task (like shakespeare) , where given a sequence of words , we train model predict next set of words .
EXAMPLE : if nth training input to LSTM Network is : 'I want to ' AND output of netwok is "want to eat" . Here , each word ['want','to','eat'] are output of LSTM during each timestep.

======================================================

Let's say you have time-series data with NN rows and 700700 columns which you want to feed to a SimpleRNN(200, return_sequence=True) layer in Keras. Before you feed that to the RNN, you need to reshape the previous data to a 3D tensor. So it becomes a N×700×1N×700×1.

The image is taken from https://colah.github.io/posts/2015-08-Understanding-LSTMs

In RNN, your columns (the "700 columns") is the timesteps of RNN. Your data is processed from t=1 to 700t=1 to 700. After feeding the data to the RNN, now it have 700 outputs which are h1h1 to h700h700, not h1h1to h200h200. Remember that now the shape of your data is N×700×200N×700×200 which is samples (the rows) x timesteps (the columns) x channels.

And then, when you apply a TimeDistributedDense , you're applying a Dense  layer on each timestep, which means you're applying a Dense  layer on each h1h1, h2h2,...,htht respectively. Which means: actually you're applying the fully-connected operation on each of its channels (the "200" one) respectively, from h1h1 to h700h700. The 1st "1×1×2001×1×200" until the 700th "1×1×2001×1×200".

Why are we doing this? Because you don't want to flatten the RNN output.

Why not flattening the RNN output? Because you want to keep each timestep values separate.

Why keep each timestep values separate? Because:

  • you're only want to interacting the values between its own timestep
  • you don't want to have a random interaction between different timesteps and channels.

参考:

https://datascience.stackexchange.com/questions/10836/the-difference-between-dense-and-timedistributeddense-of-keras

https://github.com/keras-team/keras/blob/master/keras/layers/wrappers.py#L43

https://github.com/keras-team/keras/issues/1029

https://stackoverflow.com/questions/42398645/timedistributed-vs-timedistributeddense-keras

Keras 中 TimeDistributed 和 TimeDistributedDense 理解的更多相关文章

  1. keras中TimeDistributed的用法

    TimeDistributed这个层还是比较难理解的.事实上通过这个层我们可以实现从二维像三维的过渡,甚至通过这个层的包装,我们可以实现图像分类视频分类的转化. 考虑一批32个样本,其中每个样本是一个 ...

  2. keras中TimeDistributed

    TimeDistributed这个层还是比较难理解的.事实上通过这个层我们可以实现从二维像三维的过渡,甚至通过这个层的包装,我们可以实现图像分类视频分类的转化. 考虑一批32个样本,其中每个样本是一个 ...

  3. 深度学习基础系列(五)| 深入理解交叉熵函数及其在tensorflow和keras中的实现

    在统计学中,损失函数是一种衡量损失和错误(这种损失与“错误地”估计有关,如费用或者设备的损失)程度的函数.假设某样本的实际输出为a,而预计的输出为y,则y与a之间存在偏差,深度学习的目的即是通过不断地 ...

  4. 在Keras中可视化LSTM

    作者|Praneet Bomma 编译|VK 来源|https://towardsdatascience.com/visualising-lstm-activations-in-keras-b5020 ...

  5. SQL SERVER 2005/2008 中关于架构的理解(二)

    本文上接SQL SERVER 2005/2008 中关于架构的理解(一)      架构的作用与示例 用户与架构(schema)分开,让数据库内各对象不再绑在某个用户账号上,可以解决SQL SERVE ...

  6. SQL SERVER 2005/2008 中关于架构的理解(一)

    SQL SERVER 2005/2008 中关于架构的理解(一) 在一次的实际工作中碰到以下情况,在 SQL SERVER 2008中,新建了一个新用户去访问几张由其他用户创建的表,但是无法进行查询, ...

  7. C++中 类的构造函数理解(一)

    C++中 类的构造函数理解(一) 写在前面 这段时间完成三个方面的事情: 1.继续巩固基础知识(主要是C++ 方面的知识) 2.尝试实现一个iOS的app,通过完成app,学习iOS开发中要用到的知识 ...

  8. ECshop中的session机制理解

    ECshop中的session机制理解     在网上找了发现都是来之一人之手,也没有用自己的话去解释,这里我就抛砖引玉,发表一下自己的意见,还希望能得到各界人士的指导批评! 此session机制不需 ...

  9. [开发技巧]·Numpy中对axis的理解与应用

    [开发技巧]·Numpy中对axis的理解与应用 1.问题描述 在使用Numpy时我们经常要对Array进行操作,如果需要针对Array的某一个纬度进行操作时,就会用到axis参数. 一般的教程都是针 ...

随机推荐

  1. 如何设置 sass 全局变量,js如何使用 sass 变量

    关键词:sass全局变量 js引用sass变量 1 如何在样式中使用 scss 的声明的全局变量 假设我们有一个全局的 scss 变量文件/styles/_vars.sass,如下: $red: re ...

  2. IDEA Exception in thread "main" java.lang.ClassNotFoundException: com.streamax.servicecore.business.FileManageServApplication

    [参考文章]:intelij idea: Exception in thread "main" java.lang.ClassNotFoundException 1. 报错信息 2 ...

  3. webrtc vad小bug

    当channel为5的时候offset为80,再进行下面的操作smallest_values[j + 1]将会越出数组的限界到”第97个“:应该将下图的16改为15 low_value_vector数 ...

  4. Windows10开发手记-RelativePanel使用详解

    Windows 10已于7月29号面向全球发布,同时Universal Windows Platform(UWP) SDK也已正式放出,配合VS 2015我们可以开发出通用的Windows App. ...

  5. [源码]python Scapy Ftp密码嗅探

    [源码]python Scapy Ftp密码嗅探 原理很简单,FTP密码明文传输的 截取tcp 21端口User和Pass数据即可 Scapy框架编译程序较大(一个空程序都25M),所以就不提供exe ...

  6. UFLDL 教程学习笔记(二)反向传导算法

    UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授及其团队编写的一套 ...

  7. 自动化测试工具selenium webdirver

    看视频学到的,自动化测试工具,可以模拟用户操作,包括输入,点击等操作 新建新文件夹 在命令行执行npm init  ,一路回车,把项目先初始化 安装  npm install selenium-web ...

  8. 修改Spring Boot默认的上下文

    前言 默认情况下,Spring Boot使用的服务上下文为"/",我们可以通过"http://localhost:PORT/" 直接诶访问应用: 但是在生产环境 ...

  9. 从零开始学 Web 之 ES6(四)ES6基础语法二

    大家好,这里是「 从零开始学 Web 系列教程 」,并在下列地址同步更新...... github:https://github.com/Daotin/Web 微信公众号:Web前端之巅 博客园:ht ...

  10. python-拷贝

    1.普通的赋值操作 def print_id(array): ids = [] for ar in array: ids.append(id(ar)) print (array, ids) a = [ ...