本文基于Spark 2.1.0版本

新手首先要明白几个配置:

spark.default.parallelism:(默认的并发数)

如果配置文件spark-default.conf中没有显示的配置,则按照如下规则取值:

本地模式(不会启动executor,由SparkSubmit进程生成指定数量的线程数来并发):

spark-shell                              spark.default.parallelism = 1

spark-shell --master local[N] spark.default.parallelism = N (使用N个核)

spark-shell --master local      spark.default.parallelism = 1

伪集群模式(x为本机上启动的executor数,y为每个executor使用的core数,

z为每个 executor使用的内存)

spark-shell --master local-cluster[x,y,z] spark.default.parallelism = x * y

mesos 细粒度模式

Mesos fine grained mode  spark.default.parallelism = 8

其他模式(这里主要指yarn模式,当然standalone也是如此)

Others: total number of cores on all executor nodes or 2, whichever is larger

spark.default.parallelism =  max(所有executor使用的core总数, 2)

经过上面的规则,就能确定了spark.default.parallelism的默认值(前提是配置文件spark-default.conf中没有显示的配置,如果配置了,则spark.default.parallelism = 配置的值)

还有一个配置比较重要,spark.files.maxPartitionBytes = 128 M(默认)

The maximum number of bytes to pack into a single partition when reading files.

代表着rdd的一个分区能存放数据的最大字节数,如果一个400m的文件,只分了两个区,则在action时会发生错误。

当一个spark应用程序执行时,生成spark.context,同时会生成两个参数,由上面得到的spark.default.parallelism推导出这两个参数的值

sc.defaultParallelism     = spark.default.parallelism

sc.defaultMinPartitions = min(spark.default.parallelism,2)

当sc.defaultParallelism和sc.defaultMinPartitions最终确认后,就可以推算rdd的分区数了。

有两种产生rdd的方式:

1,通过scala 集合方式parallelize生成rdd,

如, val rdd = sc.parallelize(1 to 10)

这种方式下,如果在parallelize操作时没有指定分区数,则

rdd的分区数 = sc.defaultParallelism

2,通过textFile方式生成的rdd,

如, val rdd = sc.textFile(“path/file”)

有两种情况:

a,从本地文件file:///生成的rdd,操作时如果没有指定分区数,则默认分区数规则为:

(按照官网的描述,本地file的分片规则,应该按照hdfs的block大小划分,但实测的结果是固定按照32M来分片,可能是bug,不过不影响使用,因为spark能用所有hadoop接口支持的存储系统,所以spark textFile使用hadoop接口访问本地文件时和访问hdfs还是有区别的)

rdd的分区数 = max(本地file的分片数, sc.defaultMinPartitions)

b,从hdfs分布式文件系统hdfs://生成的rdd,操作时如果没有指定分区数,则默认分区数规则为:

rdd的分区数 = max(hdfs文件的block数目, sc.defaultMinPartitions)

补充:

1,如果使用如下方式,从HBase的数据表转换为RDD,则该RDD的分区数为该Table的region数。

String tableName ="pic_test2";

conf.set(TableInputFormat.INPUT_TABLE,tableName);

conf.set(TableInputFormat.SCAN,convertScanToString(scan));

JavaPairRDD hBaseRDD = sc.newAPIHadoopRDD(conf,

TableInputFormat.class,ImmutableBytesWritable.class,

Result.class);

Hbase Table:pic_test2的region为10,则hBaseRDD的分区数也为10。

2,如果使用如下方式,通过获取json(或者parquet等等)文件转换为DataFrame,则该DataFrame的分区数和该文件在文件系统中存放的Block数量对应。

Dataset<Row> df = spark.read().json("examples/src/main/resources/people.json");

people.json大小为300M,在HDFS中占用了2个blocks,则该DataFrame df分区数为2。

3,Spark Streaming获取Kafka消息对应的分区数,不在本文讨论。

作者:俺是亮哥
链接:https://www.jianshu.com/p/4b7d07e754fa
來源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

Spark RDD的默认分区数:(spark 2.1.0)的更多相关文章

  1. Spark RDD概念学习系列之Spark Hash Shuffle内幕彻底解密(二十)

    本博文的主要内容: 1.Hash Shuffle彻底解密 2.Shuffle Pluggable解密 3.Sorted Shuffle解密 4.Shuffle性能优化 一:到底什么是Shuffle? ...

  2. Spark RDD概念学习系列之Spark的数据存储(十二)

    Spark数据存储的核心是弹性分布式数据集(RDD). RDD可以被抽象地理解为一个大的数组(Array),但是这个数组是分布在集群上的. 逻辑上RDD的每个分区叫一个Partition. 在Spar ...

  3. Spark RDD概念学习系列之Spark的算子的分类(十一)

    Spark的算子的分类 从大方向来说,Spark 算子大致可以分为以下两类: 1)Transformation 变换/转换算子:这种变换并不触发提交作业,完成作业中间过程处理. Transformat ...

  4. Spark RDD概念学习系列之Spark的算子的作用(十四)

    Spark的算子的作用 首先,关于spark算子的分类,详细见 http://www.cnblogs.com/zlslch/p/5723857.html 1.Transformation 变换/转换算 ...

  5. Spark RDD 算子总结

    Spark算子总结 算子分类 Transformation(转换) 转换算子 含义 map(func) 返回一个新的RDD,该RDD由每一个输入元素经过func函数转换后组成 filter(func) ...

  6. Apache Spark : RDD

    Resilient Distributed Datasets Resilient Distributed Datasets (RDD) is a fundamental data structure ...

  7. spark RDD transformation与action函数整理

    1.创建RDD val lines = sc.parallelize(List("pandas","i like pandas")) 2.加载本地文件到RDD ...

  8. Apache Spark 2.2.0 中文文档 - Spark RDD(Resilient Distributed Datasets)论文 | ApacheCN

    Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD ...

  9. Apache Spark RDD(Resilient Distributed Datasets)论文

    Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD ...

随机推荐

  1. Linux命令之vi篇

    作业二: 1)  使用vi编辑器编辑文件/1.txt进入编辑模式写入内容“hello world” [root@localhost ~]# vi 1.txt 2)  进入命令行模式复制改行内容,在下方 ...

  2. 【LCA&倍增】货物运输 @upcexam5909

    时间限制: 1 Sec 内存限制: 128 MB 题目描述 在一片苍茫的大海上,有n座岛屿,岛屿与岛屿之间由桥梁连接,所有的岛屿刚好被桥梁连接成一个树形结构,即共n-1架桥梁,且从任何一座岛屿出发都能 ...

  3. Servlet(2)—java项目下web应用程序

    在java项目下手动写一个web程序 步骤: ①创建一个java项目并在根目录创建一个WebContent目录文件 ②WebContent下创建WEB-INF目录文件 ③WEB-INF下创建class ...

  4. Android定制:修改开机启动画面

    转自:https://blog.csdn.net/godiors_163/article/details/72529210 引言 Android系统在按下开机键之后就会进入启动流程,这个过程本身需要一 ...

  5. Eclipse/myEclipse 代码提示/自动提示/自动完成设置

    设置eclipse/myEclipse代码提示可以方便开发者,不用在记住拉杂的单词,只用打出首字母,就会出现提示菜单.如同dreamweaver一样方便. 1.菜单window->Prefere ...

  6. Java全栈程序员之07:IDEA中使用MAVEN构架生产级的Web项目

    在上一篇我们介绍了如何在IDEA中使用MAVEN,以及如何创建依赖等.那么在这一篇中,我们就试图搭建一个生产级的解决方案,大家可以使用这个解决方案作为骨架代码来搭建自己的开发环境. 在这里,我们要完成 ...

  7. Map:目录

    ylbtech-Map:目录 1.返回顶部 1.百度地图 http://lbsyun.baidu.com/   2.高德地图 http://lbs.amap.com/   3. 2.返回顶部   3. ...

  8. wait-for

    Use a tool such as wait-for-it, dockerize, or sh-compatible wait-for. These are small wrapper script ...

  9. 一目了然了解JAVA集合体系

    在编程中,常常需要集中存放多个数据.从传统意义上讲,数组是我们的一个很好的选择,前提是我们事先已经明确知道我们将要保存的对象的数量.一旦在数组初始化时指定了这个数组长度,这个数组长度就是不可变的,如果 ...

  10. WCF-Oracel适配器针对UDT的使用配置与注意事项

    配置方法 1.针对Oracle UDT 的数据类型需要在开发过程中手动配置生成的DLL位置和Key位置,Visual Studio->添加生成项目->Add Adapter Metadat ...