来提供两个正确的做法:

  • 斐波那契数列双倍项的做法(附加证明)
  • 矩阵快速幂

一、双倍项做法

在偶然之中,在百度中翻到了有关于斐波那契数列的词条(传送门),那么我们可以发现一个这个规律$ \frac{F_{2n}}{F_{n}}=F_{n-1}+F_{n+1} $,那么我就想到了是不是可以用这个公式实现类似于快速幂之类的东西:power(n,m)=power(n*n,m/2) m mod 2=0 power(n,m)=power(n*n,m/2)*n m mod 2=1

快速幂这个东西,是分成偶数情况和奇数情况,所以我们只是知道偶数想的计算公式,所以我们接下来要推导一下奇数项的递归式
\[ F_{2n}=F_{n}\times(F_{n-1}+F_{n+1})\]
\[ F_{2n+2}=F_{n+1}\times(F_{n}+F_{n+2})\]
那么我们就是要从\(F_{2n}\)和\(F_{2n+2}\)推导求出\(F_{2n+1}\)
\[ F_{2n+1}=F_{2n+2}-F_{2n} \]
\[ F_{2n+1}=F_{n+1}\times(F_{n}+F_{n+2})-F_{n}*(F_{n-1}+F_{n+1}) \]
\[ F_{2n+1}=F_{n+1}\times F_{n}+F_{n+1}\times F_{n+2} - F_{n}\times F_{n-1}-F_{n}\times F_{n+1}\]
\[ F_{2n+1}=F_{n+1}\times F_{n+2}-F_{n}\times F_{n-1}\]
\[ F_{2n+1}=F_{n+1}\times(F_{n+1}+F_{n})-F_{n}\times(F_{n+1}-F_{n})\]
\[ F_{2n+1}={F_{n+1}}^2+{F_{n}}^2 \]
以上就是我们对于这个公式的推导
那么我们就得到了

F[2n] = F[n+1]² - F[n-1]² = (2F[n-1] + F[n]) · F[n]

F[2n+1] = F[n+1]² + F[n]²

那么,我们在写一个map,那么就可以不用全部都递归到底了,优化一下。
用map映射一下大数,映射到我们的答案上。

#include <bits/stdc++.h>
using namespace std;
const int Mod=1e9+7;//mod数
long long n;
map<long long,long long> ma;//搞映射
inline long long work(long long x){
    if(x==1||x==0)return 1;//边界
    if(ma.count(x))return ma[x];//count如果是返回1那么就是这个答案已经在map中映射过了,0就是没有
    long long res=0,t=x/2;
    if(x&1) res=work(t)*(work(t-1)+work(t+1))%Mod;//公式2
    else res=work(t)*work(t)%Mod+work(t-1)*work(t-1)%Mod;//公式1
    return ma[x]=res;
}
int main() {//主程序
    cin>>n;
    long long res=work(n-1)%Mod;
    cout<<res<<endl;
    return 0;
}

注:这个程序的复杂度是也差不多是log(n),也是非常优的解法


二、矩阵乘法解法

这个解法应该是这一道题的正解。

我是一个蒟蒻,还是只是初懂矩阵乘法的小白。

我就贴一下自己的代码,详细的题解还是看一下别的大佬的题解。

#include <bits/stdc++.h>
using namespace std;
#define mod 1000000007 //Mod数
struct Matrix{//这个是矩阵的结构体
    long long ma[2][2];
};
Matrix mul(Matrix A,Matrix B)//矩阵乘法
{
    Matrix C;//答案矩阵
    C.ma[0][0]=C.ma[0][1]=C.ma[1][0]=C.ma[1][1]=0;//初始化
    for(int i=0;i<2;i++)
    {
        for(int j=0;j<2;j++)
        {
            for(int k=0;k<2;k++)
            {
                C.ma[i][j]=(C.ma[i][j]+A.ma[i][k]*B.ma[k][j])%mod;
            }
        }
    }
    return C;
}
Matrix pow_mod(Matrix A,long long n)//卡苏米+矩阵乘法优化
{
    Matrix B;
    B.ma[0][0]=B.ma[1][1]=1;
    B.ma[0][1]=B.ma[1][0]=0;
    while(n) {
        if(n&1) B=mul(B,A);
        A=mul(A,A);
        n>>=1;
    }
    return B;
}
int main()
{
    long long n;
    Matrix A;
    A.ma[0][0]=1;A.ma[0][1]=1;
    A.ma[1][0]=1;A.ma[1][1]=0;//初始的数组
    Matrix ans=pow_mod(A,n);
    printf("%lld\n",ans.ma[0][1]);//输出答案
    return 0;
}

[luogu1962]斐波那契数列的更多相关文章

  1. C#求斐波那契数列第30项的值(递归和非递归)

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  2. 斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)

    对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围 ...

  3. js中的斐波那契数列法

    //斐波那契数列:1,2,3,5,8,13…… //从第3个起的第n个等于前两个之和 //解法1: var n1 = 1,n2 = 2; for(var i=3;i<101;i++){ var ...

  4. 剑指Offer面试题:8.斐波那契数列

    一.题目:斐波那契数列 题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项.斐波那契数列的定义如下: 二.效率很低的解法 很多C/C++/C#/Java语言教科书在讲述递归函数的时 ...

  5. 算法: 斐波那契数列C/C++实现

    斐波那契数列: 1,1,2,3,5,8,13,21,34,....     //求斐波那契数列第n项的值 //1,1,2,3,5,8,13,21,34... //1.递归: //缺点:当n过大时,递归 ...

  6. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  7. Python递归及斐波那契数列

    递归函数 在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数.举个例子,我们来计算阶乘 n! = 1 * 2 * 3 * ... * n,用函数 fact(n)表示,可 ...

  8. 简单Java算法程序实现!斐波那契数列函数~

    java编程基础--斐波那契数列 问题描述:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 思路:可能出现的情况:(1) n=1 ,一种方法 ;(2)n=2 ...

  9. js 斐波那契数列(兔子问题)

    对于JS初学者来说,斐波那契数列一直是个头疼的问题,总是理不清思路. 希望看完这篇文章之后会对你有帮助. 什么是斐波那契数列 : 答: 斐波那契数列,又称黄金分割数列.因数学家列昂纳多·斐波那契(Le ...

随机推荐

  1. c# create html table test

    string html = "<html><head><title>44444444</title>"; html += @&quo ...

  2. Mvc_model实体数据验证

    MVC提供了很方便的数据验证,只需要在model里加入相关的正则等,那么就会在前台里生成相关的验证脚本.需要引用两个js文件: jquery.validate.min.js jquery.valida ...

  3. 个人博客作业Week 3 ——微软必应词典客户端

    产品:必应词典客户端 (http://bing.msn.cn/dict/)必应词典有PC,Win8/10, Windows Phone,iPhone,Android,iPad 客户端 选择客户端为:i ...

  4. 第六次Scrum meeting

    第六次Scrum  meeting 任务及完成度: 成员 12.21 12.22 陈谋 任务1040:完成stackoverflow的数据处理后的json处理(98%) 任务1114-1:完成对网页数 ...

  5. 20135327--linux内核分析 实践二

    内核模块编译 1.实验原理 Linux模块是一些可以作为独立程序来编译的函数和数据类型的集合.之所以提供模块机制,是因为Linux本身是一个单内核.单内核由于所有内容都集成在一起,效率很高,但可扩展性 ...

  6. github 心得体会

     https://github.com/xu123/text 学习了很多知识感觉很有趣 git config :配置git git add:更新working directory中的文件至stagin ...

  7. 软件工程(四)数据流图DFD

    结构化分析中,常用到数据模型为实体关系图,功能模型是数据流图 DFD 可以认为,一个基于计算机的信息处理系统由数据流和一系列的转换构成,这些转换将输入数据流变换为输出数据流.数据流图就是用来刻画数据流 ...

  8. octave基本指令1

    octave基本指令1 注释 使用: disp 输出指令 eg: >>a = pi; >>disp(sprintf('2 decimals:%0.2f'a)) 2 decima ...

  9. react + dva + ant架构后台管理系统(一)

    一.什么是dva dva是蚂蚁金服推出的一个单页应用框架,对 redux, react-router, redux-saga进行了上层封装,没有引入新的概念,但是极大的程度上提升了开发效率: 二.安装 ...

  10. Angular 添加路由

    var app=angular.module('kaifanla',['ng','ngRoute']);app.config(function($routeProvider){ //添加路由 $rou ...