【BZOJ1799】[AHOI2009]同类分布(动态规划)
【BZOJ1799】[AHOI2009]同类分布(动态规划)
题面
题解
很容易想到数位\(dp\),然而数字和整除原数似乎不好记录。没关系,直接枚举数字和就好了,这样子就可以把整除原数的余数直接记下来,然后就很好写了。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
ll l,r;int w[20];
ll f[20][200][200][2];
ll Solve(ll a)
{
if(!a)return 0;ll ret=0;int tot=0;
while(a)w[++tot]=a%10,a/=10;
reverse(&w[1],&w[tot+1]);
for(int p=1;p<=tot*9;++p)
{
memset(f,0,sizeof(f));f[0][0][0][0]=1;
for(int i=1;i<=tot;++i)
for(int j=0;j<=p;++j)
for(int k=0;k<p;++k)
for(int l=0;l<=9;++l)
{
if(j+l>p)continue;
f[i][j+l][(k*10+l)%p][1]+=f[i-1][j][k][1];
if(l<w[i])f[i][j+l][(k*10+l)%p][1]+=f[i-1][j][k][0];
if(l==w[i])f[i][j+l][(k*10+l)%p][0]+=f[i-1][j][k][0];
}
ret+=f[tot][p][0][0]+f[tot][p][0][1];
}
return ret;
}
int main()
{
cin>>l>>r;
cout<<Solve(r)-Solve(l-1)<<endl;
return 0;
}
【BZOJ1799】[AHOI2009]同类分布(动态规划)的更多相关文章
- [BZOJ1799][AHOI2009]同类分布(数位DP)
1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec Memory Limit: 64 MBSubmit: 1635 Solved: 728[Submit][S ...
- 洛谷 P4127 [AHOI2009]同类分布 解题报告
P4127 [AHOI2009]同类分布 题目描述 给出两个数\(a,b\),求出\([a,b]\)中各位数字之和能整除原数的数的个数. 说明 对于所有的数据,\(1 ≤ a ≤ b ≤ 10^{18 ...
- P4127 [AHOI2009]同类分布
P4127 [AHOI2009]同类分布 题解 好的,敲上数位DP DFS板子 记录一下填的各位数字之和 sum ,然后记录一下原数 yuan 最后判断一下 yuan%sum==0 不就好啦??? ...
- BZOJ1799 self 同类分布 数位dp
BZOJ1799self 同类分布 去博客园看该题解 题意 给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数. [约束条件]1 ≤ a ≤ b ≤ 10^18 题解 1.所有的位数之和&l ...
- 【[AHOI2009]同类分布】
这是一篇有些赖皮的题解 (如果不赖皮的话,bzoj上也是能卡过去的) 首先由于我这个非常\(sb\)的方法复杂度高达\(O(171^4)\),所以面对极限的\(1e18\)的数据实在是卡死了 但是这个 ...
- [AHOI2009]同类分布
题目大意: 问在区间[l,r]内的正整数中,有多少数能被其个位数字之和整除. 思路: 数位DP. 极端情况下,每一位都是9,所以各位数字之和不超过9*18.(为了方便这里用了9*19) f[i][j] ...
- 【题解】AHOI2009同类分布
好开心呀~果然只有不看题解做出来的题目才会真正的有一种骄傲与满足吧ヾ(๑╹◡╹)ノ" 实际上这题只要顺藤摸瓜就可以了.首先按照数位dp的套路,有两维想必是省不掉:1.当前dp到到的位数:2. ...
- [luogu4127 AHOI2009] 同类分布 (数位dp)
传送门 Solution 裸数位dp,空间存不下只能枚举数字具体是什么 注意memset最好为-1,不要是0,有很多状态答案为0 Code //By Menteur_Hxy #include < ...
- 洛谷 P4127 [AHOI2009]同类分布
题意简述 求l~r之间各位数字之和能整除原数的数的个数. 题解思路 数位DP 代码 #include <cstdio> #include <cstring> typedef l ...
随机推荐
- 面试3——java集合类总结(List)
1.集合类 数组:可以存储对象,也可以存储基本数据类型,但是一次只能存储一种类型,且长度一定,不可改变. 集合:只能存储对象,长度可变,可以存储不同类型的对象.Java集合类主要有三种:set,lis ...
- Elasticsearch Query DSL 整理总结(四)—— Multi Match Query
目录 引言 概要 fields 字段 通配符 提升字段权重 multi_match查询的类型 best_fields 类型 dis_max 分离最大化查询 best_fields 维权使者 tie_b ...
- Python从菜鸟到高手(3):声明变量
变量(variable)是Python语言中一个非常重要的概念.变量的主要作用就是为Python程序中的某个值起一个名字.类似于"张三"."李四"." ...
- 线上分享-- 基于DDD的.NET开发框架-ABP介绍
前言 为了能够帮助.Net开发者开拓视野,更好的把最新的技术应用到工作中,我在3月底受邀到如鹏网.net训练营直播间为各位学弟学妹们进行ABP框架的直播分享.同时为了让更多的.NET开发者了解ABP框 ...
- vs2017安装
每次安装包都搞的很大,而且出各式各式的问题. 安装程序清单签名失败 运行'vs_Enterprise.exe'时,出现'安装程序清单签名失败'的错误,直接删除'vs_installer.opc'文件, ...
- 《Linux内核分析》第五周学习笔记
<Linux内核分析>第五周学习笔记 扒开系统调用的三层皮(下) 郭垚 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.c ...
- 读书笔记(chapter17)
设备类型:在所有Unix系统中为了统一普通设备的操作所采用的分类 模块:Linux内核中用于按需加载和卸载目标码的机制 内核对象:内核数据结构中支持面对对象的简单操作,还支持维护对象之间的父子关系 1 ...
- 关于QQ的NABCD模型
关于QQ的NABCD模型 N--Need 随着电脑的普及,人们在网络上进行交流的时间越来越多,由于现有的交流工具还不是那么的完善,还不能够完全满足人们在交流时的需求.因此为了满足人们更多的需求,我们设 ...
- Junit4测试用例
一.题目简介 测试一元一次方程的求解 二.源码的github链接 https://github.com/liujing1994/test1 三.所设计的模块测试用例.测试结果截图 一元一次方程测试 ...
- 阅读<构建之法>13、14、15、16、17章
13章 这么多测试为什么不能整理出一个包括所有功能的测试呢?看着那么多测试都感觉奇怪了. 14章 怎样才能体现一个测试人员的工作价值呢?这样的判断又是否会太独断了? 15章 在时间上,会不会因不同功能 ...