BZOJ.2159.Crash的文明世界(斯特林数 树形DP)
挺套路但并不难的一道题
\(Description\)
给定一棵\(n\)个点的树和\(K\),边权为\(1\)。对于每个点\(x\),求\(S(x)=\sum_{i=1}^ndis(x,i)^K\)。
\(n\leq50000,\ k\leq150\)。
\(Solution\)
和其它求\(x^k\)的题一样,依旧用第二类斯特林数展开。(二项式定理依旧可以得到部分分,依旧不想看=-=)
\]
考虑这个\(\sum_{i=1}^n\binom{dis(x,i)}{k}\)怎么算。用阶乘公式拆还是一样没法算,尝试用这个公式拆:\(\binom nm=\binom{n-1}m\times\binom{n-1}{m-1}\):
\]
记\(f[x][k]=\sum_{i=1}^n\binom{dis(x,i)}{k}\),那么可以由\(x\)的相邻点\(v\)的\(f[v][k]+f[v][k-1]\)转移来(\(x\)和\(v\)与其它点的\(dis\)正好差\(1\))。
具体就是两遍树形DP,第一次自底向上求出子树内的点到\(x\)的\(dis\)的贡献,即\(f[x][i]=\sum_{v\in son[x]}f[v][i]+f[v][i-1]\);第二次从上往下更新子树外的点到\(v=son[x]\)的\(dis\)的贡献,记为\(g[v][i]=g[x][i]+g[x][i-1]+(f[x][i]-f[v][i]-f[v][i-1])+(f[x][i-1]-f[v][i-1]-f[v][i-2])\)。
然后统计一下就OK了。复杂度\(O(nk+k^2)\)。
明明取模优化的不少啊,怎么就这么慢呢=-=
//33844kb 4868ms
#include <cstdio>
#include <cctype>
#include <algorithm>
#define gc() getchar()
#define mod 10007
#define Mod(x) x>=mod&&(x-=mod)
#define Add(x,v) (x+=v)>=mod&&(x-=mod)
typedef long long LL;
const int N=50003,M=153;
int K,Enum,H[N],nxt[N<<1],to[N<<1],f[N][M];
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
}
inline void AE(int u,int v)
{
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum;
to[++Enum]=u, nxt[Enum]=H[v], H[v]=Enum;
}
void DFS1(int x,int fa)
{
f[x][0]=1;//这个初始化...C(dis(x,x),0)=1?有点小懵逼=-=
int K=::K;
for(int i=H[x],v; i; i=nxt[i])
if((v=to[i])!=fa)
{
DFS1(v,x), f[x][0]+=f[v][0];
for(int j=1; j<=K; ++j) f[x][j]+=f[v][j]+f[v][j-1];
}
for(int i=0; i<=K; ++i) f[x][i]%=mod;
}
void DFS2(int x,int fa)
{
static int g[N];
int K=::K;
for(int i=H[x],v; i; i=nxt[i])
if((v=to[i])!=fa)
{
g[0]=f[x][0]+mod-f[v][0];
for(int j=1; j<=K; ++j) g[j]=f[x][j]+mod-f[v][j]+mod-f[v][j-1];//g[j] = g[x][j]+f[x][j]-f[v][j]-f[v][j-1]
f[v][0]=(f[v][0]+g[0])%mod;
for(int j=1; j<=K; ++j) f[v][j]=(f[v][j]+g[j]+g[j-1])%mod;
DFS2(v,x);
}
}
int main()
{
static int S[M][M];
const int n=read(),K=read(); ::K=K;
// for(int i=1; i<n; ++i) AE(read(),read());
for(int L=read(),now=read(),A=read(),B=read(),Q=read(),i=1; i<n; ++i)
now=(now*A+B)%Q, AE(i-now%(i<L?i:L),i+1);
DFS1(1,1), DFS2(1,1), S[0][0]=1;
for(int i=1; i<=K; ++i)
for(int j=1; j<=i; ++j) S[i][j]=(S[i-1][j-1]+S[i-1][j]*j)%mod;
for(int x=1; x<=n; ++x)
{
LL ans=0;
for(int i=0,fac=1; i<=K; ++i) ans+=1ll*S[K][i]*fac*f[x][i]%mod, fac=fac*(i+1)%mod;
printf("%d\n",(int)(ans%mod));
}
return 0;
}
BZOJ.2159.Crash的文明世界(斯特林数 树形DP)的更多相关文章
- 【BZOJ2159】Crash的文明世界 斯特林数+树形dp
Description Crash 小朋友最近迷上了一款游戏--文明5(Civilization V).在这个游戏中,玩家可以建立和发展自己的国家,通过外交和别的国家交流,或是通过战争征服别的国家.现 ...
- [BZOJ2159]Crash的文明世界(斯特林数+树形DP)
题意:给定一棵树,求$S(i)=\sum_{j=1}^{n}dist(i,j)^k$.题解:根据斯特林数反演得到:$n^m=\sum_{i=0}^{n}C(n,i)\times i!\times S( ...
- BZOJ 2159: Crash 的文明世界(树形dp+第二类斯特林数+组合数)
题意 给定一棵 \(n\) 个点的树和一个常数 \(k\) , 对于每个 \(i\) , 求 \[\displaystyle S(i) = \sum _{j=1} ^ {n} \mathrm{dist ...
- bzoj 2159 Crash 的文明世界 && hdu 4625 JZPTREE ——第二类斯特林数+树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2159 学习材料:https://blog.csdn.net/litble/article/d ...
- BZOJ 2159: Crash 的文明世界(组合数学+第二类斯特林数+树形dp)
传送门 解题思路 比较有意思的一道数学题.首先\(n*k^2\)的做法比较好想,就是维护一个\(x^i\)这种东西,然后转移的时候用二项式定理拆开转移.然后有一个比较有意思的结论就是把求\(x^i\) ...
- bzoj 2159 Crash 的文明世界 & hdu 4625 JZPTREE —— 第二类斯特林数+树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2159 使用公式:\( n^{k} = \sum\limits_{i=0}^{k} S(k,i ...
- bzoj 2159: Crash 的文明世界
Time Limit: 10 Sec Memory Limit: 259 MB Submit: 480 Solved: 234[Submit][Status][Discuss] Descripti ...
- [bzoj 2159]Crash的文明世界
今天看到一个鬼题 心情好的时候写 [题意]求树上所有点对距离的k次方和,所有边权为1 大爷方的题解:http://tonyfang.is-programmer.com/posts/204972.htm ...
- 洛谷P4827 [国家集训队] Crash 的文明世界 [斯特林数,组合数,DP]
传送门 思路 又见到这个\(k\)次方啦!按照套路,我们将它搞成斯特林数: \[ ans_x=\sum_{i=0}^k i!S(k,i)\sum_y {dis(x,y) \choose i} \] 前 ...
随机推荐
- cf里的一些简单组合数题
cf711D 成环的和不成环的要单独计算,环用双联通做的QAQ /* 所有情况-成环的情况 */ #include<bits/stdc++.h> using namespace std; ...
- 论文阅读笔记八:SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation (IEEE2017)
原文链接:https://arxiv.org/pdf/1511.00561.pdf github(tensorflow):https://github.com/aizawan/segnet 基于Seg ...
- spring中的xml配置出处
- CORS跨域
一:简介 为什么会出现跨域问题? 受同源策略影响,不同域名之间不可以进行访问.同源策略(Same-Origin Policy).所谓的 同源 是指域名.协议.端口号 相同.不同的客户端脚本(JavaS ...
- Ubuntu下Gradle环境配置
sudo gedit ~/.profile sudo source ~/.profile env # for java export JAVA_HOME=/home/cmm/jdk export CL ...
- 解决Python安装模块出错 ImportError: No module named setuptools
1.下载ez_setup.py文件 下载地址:https://bootstrap.pypa.io/ez_setup.py 百度地址:http://pan.baidu.com/s/1jIgMO9w 2. ...
- WPF在XAML中实现持续动画的暂停、恢复、停止
1.动画通过EventTrigger监听按钮的FrameworkElement.Loaded事件,但控件载入时就进行动画, 持续动画通过<BeginStoryboard Name="y ...
- [转] Javascript中理解发布--订阅模式
发布订阅模式介绍 发布---订阅模式又叫观察者模式,它定义了对象间的一种一对多的关系,让多个观察者对象同时监听某一个主题对象,当一个对象发生改变时,所有依赖于它的对象都将得到通知. 现实生活中的发布- ...
- T4模版自动生成MSSQL实体类
在Model层建立ModelAuto.ttinclude文件 <#@ assembly name="System.Core"#> <#@ assembly nam ...
- sparkStreaming消费kafka-0.8方式:direct方式(存储offset到zookeeper)
生产中,为了保证kafka的offset的安全性,并且防止丢失数据现象,会手动维护偏移量(offset) 版本:kafka:0.8 其中需要注意的点: 1:获取zookeeper记录的分区偏移量 2: ...