一、数据准备

网络结构:lenet_lr.prototxt

训练好的模型:lenet_lr_iter_10000.caffemodel

下载地址:链接:https://pan.baidu.com/s/1uBDTKapT1yFHX4TEMaxQvQ 密码:2mla

二、利用pycaffe可视化,只需根据prototxt文件即可得到

~/caffe/caffe/examples/mnist$ python /home/tingpan/caffe/caffe/python/draw_net.py lenet_lr.prototxt lenet_lr.png

三、matlab权值可视化

1、切换至caffe目录下,在matlab目录中新建mnist_lr_weights_vis.m

clear;
clc;
close all;
addpath('matlab')
caffe.set_mode_cpu();
caffe.version()
net = caffe.Net('examples/mnist/lenet_lr.prototxt' , ...
'examples/mnist/lenet_lr_iter_10000.caffemodel', 'test');
net.layer_names
net.blob_names
ip_layer = net.layer_vec();
weight_blob = ip_layer.params();
w = weight_blob.get_data();
size(w) %784x10
bias_blob = ip_layer.params();
b = bias_blob.get_data();
size(b) %10x1 w = w - min(min(w));
w = w/(max(max(w)))*;
w = uint8(w);
figure; imshow(w);
imwrite(w, './matlab/ip_weight.bmp');
sprintf('finish')

2、点击运行

点击添加到路径。

3、输出:

ans =

1.0.

ans =

  × cell 数组

    'mnist'
'label_mnist_1_split'
'ip'
'ip_ip_0_split'
'accuracy'
'loss' ans = × cell 数组 'data'
'label'
'label_mnist_1_split_0'
'label_mnist_1_split_1'
'ip'
'ip_ip_0_split_0'
'ip_ip_0_split_1'
'accuracy'
'loss' ans = ans = ans = finish

4、分析

net内容为

可得matlab可视化得到的网络模型是

从图中可输出layer有6层(6个矩形),blob有9个(9个椭圆形或多边形);

其中,InnerProduct(内积层,也即全连接层),存有权重信息。该权重尺寸为784x10,可推出blob的data的size为100x784,blob中的ip的size为100x10;

net.layer_vec中只有ip层的params不为空

其中第一个blob的size为748x10,为权重;第二个blob的size为10x1,为偏置参数。

得到的权值图片为:caffe/matlab/ip_weight.bmp

end

mnist全连接层网络权值可视化的更多相关文章

  1. bvlc_reference_caffenet网络权值可视化

    一.网络结构 models/bvlc_reference_caffenet/deploy.prototxt 二.显示conv1的网络权值 clear; clc; close all; addpath( ...

  2. 深度学习原理与框架-卷积网络细节-图像分类与图像位置回归任务 1.模型加载 2.串接新的全连接层 3.使用SGD梯度对参数更新 4.模型结果测试 5.各个模型效果对比

    对于图像的目标检测任务:通常分为目标的类别检测和目标的位置检测 目标的类别检测使用的指标:准确率, 预测的结果是类别值,即cat 目标的位置检测使用的指标:欧式距离,预测的结果是(x, y, w, h ...

  3. caffe之(四)全连接层

    在caffe中,网络的结构由prototxt文件中给出,由一些列的Layer(层)组成,常用的层如:数据加载层.卷积操作层.pooling层.非线性变换层.内积运算层.归一化层.损失计算层等:本篇主要 ...

  4. 全连接层(FC)与全局平均池化层(GAP)

    在卷积神经网络的最后,往往会出现一两层全连接层,全连接一般会把卷积输出的二维特征图转化成一维的一个向量,全连接层的每一个节点都与上一层每个节点连接,是把前一层的输出特征都综合起来,所以该层的权值参数是 ...

  5. fc全连接层的作用、卷积层的作用、pooling层、激活函数的作用

    fc:1.起到分类器的作用.对前层的特征进行一个加权和,(卷积层是将数据输入映射到隐层特征空间)将特征空间通过线性变换映射到样本标记空间(也就是label) 2.1*1卷积等价于fc:跟原featur ...

  6. CNN学习笔记:全连接层

    CNN学习笔记:全连接层 全连接层 全连接层在整个网络卷积神经网络中起到“分类器”的作用.如果说卷积层.池化层和激活函数等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的特征表示映射到样 ...

  7. 深度学习Keras框架笔记之Dense类(标准的一维全连接层)

    深度学习Keras框架笔记之Dense类(标准的一维全连接层) 例: keras.layers.core.Dense(output_dim,init='glorot_uniform', activat ...

  8. PyTorch全连接ReLU网络

    PyTorch全连接ReLU网络 1.PyTorch的核心是两个主要特征: 一个n维张量,类似于numpy,但可以在GPU上运行 搭建和训练神经网络时的自动微分/求导机制 本文将使用全连接的ReLU网 ...

  9. resnet18全连接层改成卷积层

    想要尝试一下将resnet18最后一层的全连接层改成卷积层看会不会对网络效果和网络大小有什么影响 1.首先先对train.py中的更改是: train.py代码可见:pytorch实现性别检测 # m ...

随机推荐

  1. pycharm鸡火

    由于github被封杀,大虾把它挪到了gitee下面 /pengzhile/jetbrains-agent 主要是一个jar包,放在D:\Program Files\JetBrains\PyCharm ...

  2. AI robots CodeForces - 1045G (cdq分治)

    大意: n个机器人, 位置$x_i$, 可以看到$[x_i-r_i,x_i+r_i]$, 智商$q_i$, 求智商差不超过$k$且能互相看到的机器人对数. 这个题挺好的, 关键是要求互相看到这个条件, ...

  3. 从rnn到lstm,再到seq2seq(二)

    从图上可以看出来,decode的过程其实都是从encode的最后一个隐层开始的,如果encode输入过长的话,会丢失很多信息,所以设计了attation机制. attation机制的decode的过程 ...

  4. Servlet中的过滤器Filter

    链web.xml中元素执行的顺序listener->filter->struts拦截器->servlet. 1.过滤器的概念 Java中的Filter 并不是一个标准的Servlet ...

  5. 在idea中用tomcat远程部署调试

    适用于生产环境下的调试. 1.catalina配置 在服务器的bin下创建setenv.sh,内容如下 1099是jmx,最后是服务器ip 2.启动tomcat ./catalina.sh jpda ...

  6. 菜鸟webpack教程纠错

    gei事例: http://www.runoob.com/w3cnote/webpack-tutorial.html 本次的问题主要是在loader部分,原因是按照教程的操作,会出现一下错误 后来发现 ...

  7. spoj periodni

    题解: dp 方程弄出来就好做了 代码: #include<bits/stdc++.h> ,M=; typedef int arr[N]; typedef long long ll; in ...

  8. 管理商品demo

    1.写一个管理商品的程序# 1.商品存在文件里面# 2.添加商品的时候,商品存在的就不能添加了,数量只能是大于0的整数,价格可以是小数.整数,但是只能是大于0的# 商品名称# 商品价格# 商品数量# ...

  9. python 文件读写时用open还是codecs.open

    当我面有数据需要保存时,第一时间一般会想到写到一个txt文件中,当然,数据量比较大的时候还是写到数据库比较方便管理,需要进行网络传输时要序列化,json化.下面主要整理一下平时用的最多的写入到文件中, ...

  10. JAVA条件语句:if;switch case

    if(布尔表达式) { //如果布尔表达式为true将执行的语句 }   如果布尔表达式为true 执行里面的代码 if...else语句: if(布尔表达式){ //如果布尔表达式的值为true } ...