一、数据准备

网络结构:lenet_lr.prototxt

训练好的模型:lenet_lr_iter_10000.caffemodel

下载地址:链接:https://pan.baidu.com/s/1uBDTKapT1yFHX4TEMaxQvQ 密码:2mla

二、利用pycaffe可视化,只需根据prototxt文件即可得到

~/caffe/caffe/examples/mnist$ python /home/tingpan/caffe/caffe/python/draw_net.py lenet_lr.prototxt lenet_lr.png

三、matlab权值可视化

1、切换至caffe目录下,在matlab目录中新建mnist_lr_weights_vis.m

clear;
clc;
close all;
addpath('matlab')
caffe.set_mode_cpu();
caffe.version()
net = caffe.Net('examples/mnist/lenet_lr.prototxt' , ...
'examples/mnist/lenet_lr_iter_10000.caffemodel', 'test');
net.layer_names
net.blob_names
ip_layer = net.layer_vec();
weight_blob = ip_layer.params();
w = weight_blob.get_data();
size(w) %784x10
bias_blob = ip_layer.params();
b = bias_blob.get_data();
size(b) %10x1 w = w - min(min(w));
w = w/(max(max(w)))*;
w = uint8(w);
figure; imshow(w);
imwrite(w, './matlab/ip_weight.bmp');
sprintf('finish')

2、点击运行

点击添加到路径。

3、输出:

ans =

1.0.

ans =

  × cell 数组

    'mnist'
'label_mnist_1_split'
'ip'
'ip_ip_0_split'
'accuracy'
'loss' ans = × cell 数组 'data'
'label'
'label_mnist_1_split_0'
'label_mnist_1_split_1'
'ip'
'ip_ip_0_split_0'
'ip_ip_0_split_1'
'accuracy'
'loss' ans = ans = ans = finish

4、分析

net内容为

可得matlab可视化得到的网络模型是

从图中可输出layer有6层(6个矩形),blob有9个(9个椭圆形或多边形);

其中,InnerProduct(内积层,也即全连接层),存有权重信息。该权重尺寸为784x10,可推出blob的data的size为100x784,blob中的ip的size为100x10;

net.layer_vec中只有ip层的params不为空

其中第一个blob的size为748x10,为权重;第二个blob的size为10x1,为偏置参数。

得到的权值图片为:caffe/matlab/ip_weight.bmp

end

mnist全连接层网络权值可视化的更多相关文章

  1. bvlc_reference_caffenet网络权值可视化

    一.网络结构 models/bvlc_reference_caffenet/deploy.prototxt 二.显示conv1的网络权值 clear; clc; close all; addpath( ...

  2. 深度学习原理与框架-卷积网络细节-图像分类与图像位置回归任务 1.模型加载 2.串接新的全连接层 3.使用SGD梯度对参数更新 4.模型结果测试 5.各个模型效果对比

    对于图像的目标检测任务:通常分为目标的类别检测和目标的位置检测 目标的类别检测使用的指标:准确率, 预测的结果是类别值,即cat 目标的位置检测使用的指标:欧式距离,预测的结果是(x, y, w, h ...

  3. caffe之(四)全连接层

    在caffe中,网络的结构由prototxt文件中给出,由一些列的Layer(层)组成,常用的层如:数据加载层.卷积操作层.pooling层.非线性变换层.内积运算层.归一化层.损失计算层等:本篇主要 ...

  4. 全连接层(FC)与全局平均池化层(GAP)

    在卷积神经网络的最后,往往会出现一两层全连接层,全连接一般会把卷积输出的二维特征图转化成一维的一个向量,全连接层的每一个节点都与上一层每个节点连接,是把前一层的输出特征都综合起来,所以该层的权值参数是 ...

  5. fc全连接层的作用、卷积层的作用、pooling层、激活函数的作用

    fc:1.起到分类器的作用.对前层的特征进行一个加权和,(卷积层是将数据输入映射到隐层特征空间)将特征空间通过线性变换映射到样本标记空间(也就是label) 2.1*1卷积等价于fc:跟原featur ...

  6. CNN学习笔记:全连接层

    CNN学习笔记:全连接层 全连接层 全连接层在整个网络卷积神经网络中起到“分类器”的作用.如果说卷积层.池化层和激活函数等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的特征表示映射到样 ...

  7. 深度学习Keras框架笔记之Dense类(标准的一维全连接层)

    深度学习Keras框架笔记之Dense类(标准的一维全连接层) 例: keras.layers.core.Dense(output_dim,init='glorot_uniform', activat ...

  8. PyTorch全连接ReLU网络

    PyTorch全连接ReLU网络 1.PyTorch的核心是两个主要特征: 一个n维张量,类似于numpy,但可以在GPU上运行 搭建和训练神经网络时的自动微分/求导机制 本文将使用全连接的ReLU网 ...

  9. resnet18全连接层改成卷积层

    想要尝试一下将resnet18最后一层的全连接层改成卷积层看会不会对网络效果和网络大小有什么影响 1.首先先对train.py中的更改是: train.py代码可见:pytorch实现性别检测 # m ...

随机推荐

  1. Axure 交互样式和选项组的设置

    1.点击元件,点击属性,点击选中,点击图片,选择相应的图片,选中功能是当点击这个元件的时候,元件的变成相应的图片,然后再设置鼠标单击时的动作是选中,就可以实现选中某个元件的时候,元件会变成其他的图片. ...

  2. p6spy简介

    在公司项目中运用了这项技术,一开始不清楚这是干啥用的,在网上查找资料有所一定的了解,但是应该不够全面,希望可以评论指出. p6spy是数据库动态监控的一种框架,它可以使得数据库数据无缝拦截和操作,而不 ...

  3. html和jsp区别

    html和jsp的区别及优缺点   ♥ HTML(Hypertext Markup Language)文本标记语言,它是静态页面,和JavaScript一样解释性语言,为什么说是解释性语言呢?因为,只 ...

  4. 从rnn到lstm,再到seq2seq(二)

    从图上可以看出来,decode的过程其实都是从encode的最后一个隐层开始的,如果encode输入过长的话,会丢失很多信息,所以设计了attation机制. attation机制的decode的过程 ...

  5. 学习笔记-AngularJs(九)

    到目前为止,我们所做的学习案例都是没有加任何动画效果的,对于以往来说,我们经常会去使用一些动画插件或是css框架(如:animate.css)来点缀我们的网页,这样显得生动,高大上,那么接下来我们可以 ...

  6. prototype和__proto__的关系是什么

    首先,要明确几个点:1.在JS里,万物皆对象.方法(Function)是对象,方法的原型(Function.prototype)是对象.因此,它们都会具有对象共有的特点.即:对象具有属性__proto ...

  7. python全栈开发笔记----基本数据类型---列表List

    #list 是 类 ,列表 序列是Python中最基本的数据结构.序列中的每个元素都分配一个数字 - 它的位置,或索引,第一个索引是0,第二个索引是1,依此类推. Python有6个序列的内置类型,但 ...

  8. Linux3.10.0块IO子系统流程(5)-- 为SCSI命令准备聚散列表

    SCSI数据缓冲区组织成聚散列表的形式.Linux内核中表示聚散列表的基本数据结构是scatterlist,虽然名字中有list,但它只对应一个内存缓冲区,聚散列表就是多个scatterlist的组合 ...

  9. ES6函数的特性(箭头语法)

    //ES5中的函数的定义 var fn=function(){ console.log(111); } //ES6中函数的定义 let fn=()=>{ console.log(222); } ...

  10. Python 进程池的异步方法

    import time from multiprocessing import Process,Pool def f1(n): time.sleep(0.5) # print(n) return n* ...