P2877 [USACO07JAN]牛校Cow School(01分数规划+决策单调性分治)
P2877 [USACO07JAN]牛校Cow School
决策单调性分治,可以解决(不限于)一些你知道要用斜率优化却不会写的问题
怎么证明?可以暴力打表
我们用$ask(l,r,dl,dr)$表示处理区间$[l,r]$时,这段区间的决策点已固定在$[dl,dr]$中
设$mid=(l+r)/2$,暴力处理$mid$的最优决策点$dm$
再向下分治$ask(l,mid-1,dl,dm)$,$ask(mid+1,r,dm,dr)$
对于本题,先按$t[i]/p[i]$从大到小排序,排序后的默认方案(删掉后D个)即为
取区间$[1,n-D]$,舍去区间$[n-D+1,D]$
怎么判断默认方案是否最优呢
根据01分数规划的基本套路(大雾)
设$r=st[i]/sp[i]$($st[i],sp[i]$为排序后$t,p$的前缀和)
在$[1,n-D]$中找到$A=min{t[i]-r*p[i]}$
在$[n-D+1,n]$中找到$B=max{t[i]-r*p[i]}$
如果$A<B$,那么交换A,B可以使答案更优,即默认方案不是最佳方案
于是就可以分治处理辣
复杂度$O(nlogn)$
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
#define N 50005
struct data{ll t,p;}a[N];
int n,ans; ll f[N],g[N],st[N],sp[N];
inline bool cmp(data A,data B){return A.t*B.p>A.p*B.t;}
void getf(int l,int r,int dl,int dr){
int mid=(l+r)>>,dm;
f[mid]=1e16;
for(int i=dl;i<=min(mid,dr);++i){
ll tt=sp[mid]*a[i].t-st[mid]*a[i].p;
if(tt<f[mid]) f[mid]=tt,dm=i;
}
if(l<mid) getf(l,mid-,dl,dm);
if(r>mid) getf(mid+,r,dm,dr);
}
void getg(int l,int r,int dl,int dr){
int mid=(l+r)>>,dm;
g[mid]=-1e16;
for(int i=dr;i>=max(mid+,dl);--i){
ll tt=sp[mid]*a[i].t-st[mid]*a[i].p;
if(tt>g[mid]) g[mid]=tt,dm=i;
}
if(l<mid) getg(l,mid-,dl,dm);
if(r>mid) getg(mid+,r,dm,dr);
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;++i) scanf("%lld%lld",&a[i].t,&a[i].p);
sort(a+,a+n+,cmp);
for(int i=;i<=n;++i) st[i]=a[i].t+st[i-],sp[i]=a[i].p+sp[i-];
getf(,n-,,n); getg(,n-,,n);
for(int i=;i<n;++i) if(f[i]<g[i]) ++ans;
printf("%d\n",ans);
for(int i=n-;i;--i) if(f[i]<g[i]) printf("%d\n",n-i);
return ;
}
P2877 [USACO07JAN]牛校Cow School(01分数规划+决策单调性分治)的更多相关文章
- P2877 [USACO07JAN]牛校Cow School
传送门 $01$规划 $01$规划优质讲解:传送门 考虑先将每一科按 $t/p$ 从小到大排序,枚举每一个 $D$(删除的考试数量) 显然一开始的成绩是 $\frac{\sum_{i=d+1}^nt[ ...
- 牛客多校5 A-gpa(01分数规划)
gpa 链接:https://www.nowcoder.com/acm/contest/143/A来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言 ...
- 2018年东北农业大学春季校赛 I wyh的物品【01分数规划/二分】
链接:https://www.nowcoder.com/acm/contest/93/I来源:牛客网 题目描述 wyh学长现在手里有n个物品,这n个物品的重量和价值都告诉你,然后现在让你从中选取k个, ...
- POJ3621Sightseeing Cows[01分数规划 spfa(dfs)负环 ]
Sightseeing Cows Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9703 Accepted: 3299 ...
- 【转】[Algorithm]01分数规划
因为搜索关于CFRound277.5E题的题解时发现了这篇文章,很多地方都有值得借鉴的东西,因此转了过来 原文:http://www.cnblogs.com/perseawe/archive/2012 ...
- BZOJ5281: [Usaco2018 Open]Talent Show 01分数规划+01背包
Description FarmerJohn要带着他的N头奶牛,方便起见编号为1…N,到农业展览会上去,参加每年的达牛秀!他的第i头奶牛重 量为wi,才艺水平为ti,两者都是整数.在到达时,Farme ...
- BZOJ5281: [Usaco2018 Open]Talent Show(01分数规划&DP)
5281: [Usaco2018 Open]Talent Show Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 166 Solved: 124[S ...
- POJ 3621 Sightseeing Cows 【01分数规划+spfa判正环】
题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS Memory Limit: 65536K Total ...
- BZOJ2285 [SDOI2011]保密 【01分数规划 + 网络流】
题目 现在,保密成为一个很重要也很困难的问题.如果没有做好,后果是严重的.比如,有个人没有自己去修电脑,又没有拆硬盘,后来的事大家都知道了. 当然,对保密最需求的当然是军方,其次才是像那个人.为了应付 ...
随机推荐
- Elasticsearch学习之有用博客
推荐阅读:1.阿里:https://elasticsearch.cn/article/61712.滴滴:http://t.cn/EUNLkNU3.腾讯:http://t.cn/E4y9ylL4.携程: ...
- 创建多进程Process
注册一个进程: from multiprocessing import Process import os def func(args): # 在子进程里面.args接收一个参数,如果要接受多个参数使 ...
- oracle数据库字符集查询
1>数据库服务器字符集 select * from nls_database_parameters,其来源于props$,是表示数据库的字符集. 查询结果如下 NLS_LANGUAGE AMER ...
- 协程greenlet、gevent
greenlet为了更好使用协程来完成多任务,python中greenlet模块对其封装,从而使得切换任务变得更加简单安装方式 pip3 install greenlet 示例代码: from gre ...
- 剑指offer——python【第15题】反转链表
题目描述 翻转一个链表 样例:给出一个链表1->2->3->null,这个翻转后的链表为3->2->1->null 思路 一种比较简单的方法是用“摘除法”.就是先新 ...
- mui APP与服务器之间的交互原理
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta name ...
- React 学习之路 (一)
先说一说对React的体验,总结 首先react相对angular来说入手简单暴力,在学习的这段时间里发现: 我们每天做的事就是在虚拟DOM上创建元素然后在渲染到真实的DOM中 渲染到真实DOM上的R ...
- Access无法启动应用程序,工作组信息文件丢失,或是已被其他用户已独占方式打开
使用SQL Server导入有密码的Access数据库内容,连接时出现错误提示: Access无法启动应用程序,工作组信息文件丢失,或是已被其他用户已独占方式打开 参考百度信息,可以点上图中的高级,在 ...
- 洛谷P3376 【模板】网络最大流
题目描述 如题,给出一个网络图,以及其源点和汇点,求出其网络最大流. 输入输出格式 输入格式: 第一行包含四个正整数N.M.S.T,分别表示点的个数.有向边的个数.源点序号.汇点序号. 接下来M行每行 ...
- python文件派生
import time class Foo: x = 1 def __init__(self, y): self.y = y def __getattr__(self, item): # 没有的情况下 ...