HDU-2829 Lawrence (DP+四边形不等式优化)
题目大意:有n个敌方军火库呈直线排列,每个军火库有一个值vi,并且任意相邻的两个库之间都有通道相连。对于任意一条连起来的军火库链,它对我方的威胁可以用函数w(i,j)表示为:w(i,j)=vi*sum(i+1,j)+w(i+1,j) i<j;
w(i,j)=0 i=j;
现在,你有m个炸弹,每颗可以炸掉相邻的两个库之间的通道,求最终的总的最小威胁值。
题目分析:定义状态dp(i,j)表示用 i 颗炸弹使前 j 个库房脱离链条后前 j 个库房产生的最小威胁值,则状态转移方程为:dp(i,j)=min(dp(i-1,k-1)+w(k,j))。很显然,w(i,j)满足凸四边形不等式和关于包含关系单调,所以dp(i,j)也满足凸四边形不等式,可以限制k的取值范围来减少状态的处理,达到优化效果。
ps:可能是我的代码写得太烂了吧!跑了400+ms!!!别人都用了不到100ms!
代码如下:
# include<iostream>
# include<cstdio>
# include<cstring>
# include<algorithm>
using namespace std;
# define LL long long const LL INF=0xfffffffffffffff;
const int N=1005; int n,m;
LL dp[N][N];
int K[N][N];
LL w[N][N];
int s[N],a[N]; void init()
{
s[0]=0;
for(int i=1;i<=n;++i){
scanf("%lld",a+i);
s[i]=a[i]+s[i-1];
}
for(int j=n;j>=1;--j){
for(int i=1;i<=n;++i)
dp[i][j]=INF;
w[j][j]=0;
for(int i=j-1;i>=1;--i)
w[i][j]=a[i]*(s[j]-s[i])+w[i+1][j];
}
} void solve()
{
if(m==0){
printf("%lld\n",w[1][n]);
return ;
}
for(int i=0;i<n;++i){
dp[0][i]=INF;
dp[i][i]=0;
K[i][i]=i;
}
for(int l=2;l<=n;++l){
for(int i=1;i+l-1<=n;++i){
int j=i+l-1;
dp[i][j]=INF;
for(int k=K[i][j-1];k<=K[i+1][j];++k){
if(dp[i][j]>dp[i-1][k-1]+w[k][j]){
dp[i][j]=dp[i-1][k-1]+w[k][j];
K[i][j]=k;
}
}
}
}
LL ans=INF;
for(int i=1;i<n;++i)
ans=min(ans,dp[m][i]+w[i+1][n]);
printf("%lld\n",ans);
} int main()
{
while(scanf("%d%d",&n,&m)&&(n+m))
{
init();
solve();
}
return 0;
}
HDU-2829 Lawrence (DP+四边形不等式优化)的更多相关文章
- HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化
HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化 n个节点n-1条线性边,炸掉M条边也就是分为m+1个区间 问你各个区间的总策略值最少的炸法 就题目本身而言,中规中矩的 ...
- CSP 201612-4 压缩编码 【区间DP+四边形不等式优化】
问题描述 试题编号: 201612-4 试题名称: 压缩编码 时间限制: 3.0s 内存限制: 256.0MB 问题描述: 问题描述 给定一段文字,已知单词a1, a2, …, an出现的频率分别t1 ...
- Codevs 3002 石子归并 3(DP四边形不等式优化)
3002 石子归并 3 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 有n堆石子排成一列,每堆石子有一个重量w[i], 每次 ...
- HDU.2829.Lawrence(DP 斜率优化)
题目链接 \(Description\) 给定一个\(n\)个数的序列,最多将序列分为\(m+1\)段,每段的价值是这段中所有数两两相乘的和.求最小总价值. \(Solution\) 写到这突然懒得写 ...
- HDU 3516 DP 四边形不等式优化 Tree Construction
设d(i, j)为连通第i个点到第j个点的树的最小长度,则有状态转移方程: d(i, j) = min{ d(i, k) + d(k + 1, j) + p[k].y - p[j].y + p[k+1 ...
- [51nod 1022] 石子归并v2 [dp+四边形不等式优化]
题面: 传送门 思路: 加强版的石子归并,现在朴素的区间dp无法解决问题了 首先我们破环成链,复制一条一样的链并粘贴到原来的链后面,变成一个2n长度的序列,在它上面dp,效率O(8n^3) 显然是过不 ...
- 51nod 1022 石子归并 V2 —— DP四边形不等式优化
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1022 1022 石子归并 V2 基准时间限制:1 秒 空间限 ...
- 区间dp+四边形不等式优化
区间dp+四边形优化 luogu:p2858 题意 给出一列数 \(v_i\),每天只能取两端的数,第 j 天取数价值为\(v_i \times j\),最大价值?? 转移方程 dp[i][j] :n ...
- hdu 3506 Monkey Party 区间dp + 四边形不等式优化
http://acm.hdu.edu.cn/showproblem.php?pid=3506 四边行不等式:http://baike.baidu.com/link?url=lHOFq_58V-Qpz_ ...
随机推荐
- Linux中Postfix虚拟用户及虚拟域(六)
Postfix基于虚拟用户虚拟域的邮件架构 上图是一个几乎完整的邮件系统架构图,这里基于Mysql数据库进行用户认证,不管是Postfix.Dovecot.webmail都需要去Mysql数据库中进行 ...
- Linux中Postfix邮件接收配置(四)
Dovecot介绍 MRA邮件取回代理也有很多如courier-imap,cyrus-imap和dovecot这三个个工具,下面重点介绍Dovecot: 1.高安全性.据 Dovecot 的作者声称, ...
- 安全测试工具之Burpsuite
端口即服务,每一个服务对应一个或多个端口.端口扫描即通过一些方法检测到一台主机的一段特定端口是否提供相应的服务.利用这些扫描结果,正常用户可以访问系统所提供的服务,而黑客却可以利用这些服务中的漏洞对系 ...
- Python之路----迭代器与生成器
一.迭代器 L=[1,,2,3,4,5,] 取值:索引.循环for 循环for的取值:list列表 dic字典 str字符串 tuple元组 set f=open()句柄 range() enumer ...
- 了解微信小程序
了解微信小程序 版权声明:未经博主授权,内容严禁转载分享! 微信小程序官方网址:https://mp.weixin.qq.com/cgi-bin/wx 某大神知乎专栏地址:七月在夏天 https:// ...
- 20145106 java实验二
1)复数类ComplexNumber的属性 m_dRealPart: 实部,代表复数的实数部分 m_dImaginPart: 虚部,代表复数的虚数部分 public class ComplexNumb ...
- Python3基础 try-多个指定except与不指定except 简单示例
Python : 3.7.0 OS : Ubuntu 18.04.1 LTS IDE : PyCharm 2018.2.4 Conda ...
- 写一个标准宏MIN,输入两个参数,返回较小的
#define MIN(A,B) ((A) <= (B) ? (A) : (B))MIN(*p++, b)会产生宏的副作用 剖析: 这个面试题主要考查面试者对宏定义的使用,宏定义可以实现类似于函 ...
- Facebook广告API系列 Business Manager
Facebook广告API系列 Business Manager Business Manager,是个很牛叉的东西,有多牛叉呢? 因为facebook已经越来越商业化了,上面的每个账号,页面,往往都 ...
- kylin从入门到实战:实际案例
版权申明:转载请注明出处.文章来源:http://bigdataer.net/?p=308 排版乱?请移步原文获得更好的阅读体验 前面两篇文章已经介绍了kylin的相关概念以及cube的一些原理,这篇 ...