keras这个框架简洁优美,设计上堪称典范。而tensorflow就显得臃肿庞杂,混乱不清。当然,keras的周边部件比如callbacks、datasets、preprocessing有许多过度设计的感觉,但是keras的核心是好的,这个设计完美的核心使得这个系统可扩展性极强、代码逻辑性极强。然而,其中因为依旧有一些小细节,一旦理解不透,就会对keras的原理有“神奇”之感,比如本文接下来要讲的这个问题:callbacks中的stop_training。

keras的Model#fit()函数接受一个callback列表,在训练的不同阶段会触发callback的不同操作。其中这些阶段包括:

  • 训练开始和结束
  • 批次开始和结束
  • 轮次开始和结束

callback列表中的元素都是Callback的派生类的实例。每个Callback派生类都可以选择性的重写以上六个函数。

其中callback中常用的一种操作是:callback_model.stop_training=True or False

callback_model是每个Callback实例的成员变量,它对应的类型也就是Model。

但是Model并没有stop_training这个成员变量,Model继承自Network,Network也没有这个成员变量。stop_training这个属性唯一出现的两个地方就是:callbacks.py中定义回调接口的时候,train_array.py执行训练操作的时候。

这个属性仿佛从天而降、无中生有。

实际上,Model的父类Network实现了__setattr__函数,这样就可以随意往Network上“悬挂”变量了,Model当然也继承了这样的特点。

keras callback中的stop_training的更多相关文章

  1. Keras官方中文文档:常见问题与解答

    所属分类:Keras Keras FAQ:常见问题 如何引用Keras? 如何使Keras调用GPU? 如何在多张GPU卡上使用Keras "batch", "epoch ...

  2. Keras官方中文文档:keras后端Backend

    所属分类:Keras Keras后端 什么是"后端" Keras是一个模型级的库,提供了快速构建深度学习网络的模块.Keras并不处理如张量乘法.卷积等底层操作.这些操作依赖于某种 ...

  3. 在Keras模型中one-hot编码,Embedding层,使用预训练的词向量/处理图片

    最近看了吴恩达老师的深度学习课程,又看了python深度学习这本书,对深度学习有了大概的了解,但是在实战的时候, 还是会有一些细枝末节没有完全弄懂,这篇文章就用来总结一下用keras实现深度学习算法的 ...

  4. Keras官方中文文档:函数式模型API

    \ 函数式模型接口 为什么叫"函数式模型",请查看"Keras新手指南"的相关部分 Keras的函数式模型为Model,即广义的拥有输入和输出的模型,我们使用M ...

  5. Keras官方中文文档:序贯模型API

    Sequential模型接口 如果刚开始学习Sequential模型,请首先移步这里阅读文档,本节内容是Sequential的API和参数介绍. 常用Sequential属性 model.layers ...

  6. [转] 理解CheckPoint及其在Tensorflow & Keras & Pytorch中的使用

    作者用游戏的暂停与继续聊明白了checkpoint的作用,在三种主流框架中演示实际使用场景,手动点赞. 转自:https://blog.floydhub.com/checkpointing-tutor ...

  7. Keras官方中文文档:关于Keras模型

    关于Keras模型 Keras有两种类型的模型,序贯模型(Sequential)和函数式模型(Model),函数式模型应用更为广泛,序贯模型是函数式模型的一种特殊情况. 两类模型有一些方法是相同的: ...

  8. Keras官方中文文档:序贯模型

    快速开始序贯(Sequential)模型 序贯模型是多个网络层的线性堆叠,也就是"一条路走到黑". 可以通过向Sequential模型传递一个layer的list来构造该模型: f ...

  9. Keras官方中文文档:Keras安装和配置指南(Windows)

    这里需要说明一下,笔者不建议在Windows环境下进行深度学习的研究,一方面是因为Windows所对应的框架搭建的依赖过多,社区设定不完全:另一方面,Linux系统下对显卡支持.内存释放以及存储空间调 ...

随机推荐

  1. Path Sum II leetcode java

    题目: Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals the give ...

  2. Kalman滤波器从原理到实现

    Kalman滤波器的历史渊源 We are like dwarfs on the shoulders of giants, by whose grace we see farther than the ...

  3. SQL 连接操作 及 查询分析

  4. JAVA-找不到元素 'beans' 的声明

    问题: Tomcat启动时,spring加载配置文件applicationContext.xml出错,抛出nested exception is og.xml.sax.SAXParseExceptio ...

  5. Softmax 函数的特点和作用是什么?

    作者:张欣链接:https://www.zhihu.com/question/23765351/answer/98897364来源:知乎著作权归作者所有,转载请联系作者获得授权. softmax 回归 ...

  6. 让你的Python代码更加pythonic

    http://wuzhiwei.net/be_pythonic/ 何为pythonic? pythonic如果翻译成中文的话就是很python.很+名词结构的用法在中国不少,比如:很娘,很国足,很CC ...

  7. spring 判断非空提示断言

    org.springframework.util.Assert Assert.notNull(object, "Bean object must not be null");

  8. percona-Toolkit

    1:下载最新安装包 wget https://www.percona.com/downloads/percona-toolkit/2.1.1/percona-toolkit-2.1.1.tar.gz ...

  9. MongoDB分片配置系列一:

    接这篇博客: http://www.cnblogs.com/xiaoit/p/4479066.html 这里不再说明安装过程. 1:分片简介 分片是一种将海量的数据水平扩展的数据库集群系统,数据分表存 ...

  10. UVALive - 4618 Wormholes(负环)

    题目大意:给出出发点和终点和m个虫洞(虫洞的出发点.终点,生成时间和花费时间).问从起点到终点花费的最小时间 解题思路:关键是有负环,所以直接跑最短路算法的话会TLE.所以负环要处理一下 可是这个负环 ...