钉子和小球

Time Limit: 1000MS Memory Limit: 10000K

Total Submissions: 7452 Accepted: 2262

Description

有一个三角形木板,竖直立放,上面钉着n(n+1)/2颗钉子,还有(n+1)个格子(当n=5时如图1)。每颗钉子和周围的钉子的距离都等于d,每个格子的宽度也都等于d,且除了最左端和最右端的格子外每个格子都正对着最下面一排钉子的间隙。

让一个直径略小于d的小球中心正对着最上面的钉子在板上自由滚落,小球每碰到一个钉子都可能落向左边或右边(概率各1/2),且球的中心还会正对着下一颗将要碰上的钉子。例如图2就是小球一条可能的路径。

我们知道小球落在第i个格子中的概率pi=pi=,其中i为格子的编号,从左至右依次为0,1,…,n。

现在的问题是计算拔掉某些钉子后,小球落在编号为m的格子中的概率pm。假定最下面一排钉子不会被拔掉。例如图3是某些钉子被拔掉后小球一条可能的路径。

Input

第1行为整数n(2 <= n <= 50)和m(0 <= m <= n)。以下n行依次为木板上从上至下n行钉子的信息,每行中’*’表示钉子还在,’.’表示钉子被拔去,注意在这n行中空格符可能出现在任何位置。

Output

仅一行,是一个既约分数(0写成0/1),为小球落在编号为m的格子中的概pm。既约分数的定义:A/B是既约分数,当且仅当A、B为正整数且A和B没有大于1的公因子。

Sample Input

5 2

*

* .


  • . * *


Sample Output

7/16

状态转移方程,如果当前点没有钉子,那么会直接下落,如果有钉子,下落到左边和右边是概率都是一半

if(p[i][j]==0)

dp[i+2][j+1]+=dp[i][j];

else

{

dp[i+1][j]+=dp[i][j]>>1;

dp[i+1][j+1]+=dp[i][j]>>1;

}

初始的dp[0][0]=1<

#include <iostream>
#include <string.h>
#include <math.h>
#include <algorithm>
#include <stdlib.h> using namespace std;
char a[59];
int p[55][55];
long long int dp[59][59];
int n,m;
long long int ans1;
long long int ans2;
long long int gcd(long long int ans1,long long int ans2)
{
if(ans1==0)
return ans2;
return gcd(ans2%ans1,ans1);
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
ans1=0;
ans2=0;
for(int i=0;i<n;i++)
{
for(int j=0;j<=i;j++)
{
scanf("%s",a);
if(a[0]=='*')
p[i][j]=1;
else
p[i][j]=0;
}
}
memset(dp,0,sizeof(dp));
dp[0][0]=1;
for(int i=0;i<n;i++)
{
dp[0][0]<<=1;
} for(int i=0;i<n;i++)
{
for(int j=0;j<=i;j++)
{
if(p[i][j]==0)
dp[i+2][j+1]+=dp[i][j];
else
{ dp[i+1][j]+=dp[i][j]>>1; dp[i+1][j+1]+=dp[i][j]>>1;
}
}
}
ans2=dp[n][m];
for(int i=0;i<n+2;i++)
ans1+=dp[n][i];
cout<<ans2/gcd(ans1,ans2)<<"/"<<ans1/gcd(ans1,ans2)<<endl; }
return 0; }

POJ-1189 钉子和小球(动态规划)的更多相关文章

  1. POJ 1189 钉子和小球

    题目链接:http://poj.org/problem?id=1189 dp 可以知道一共有2^n条路径,则设顶点有2^n个球,若当前为'*'则向左右的球各有一半:若为'.',则球全部掉入正下方. # ...

  2. [bzoj1867][Noi1999][钉子和小球] (动态规划)

    Description Input 第1行为整数n(2<=n<=50)和m(0<=m<=n).以下n行依次为木板上从上至下n行钉子的信息,每行中‘*’表示钉子还在,‘.’表示钉 ...

  3. codevs 1709 钉子和小球

    1709 钉子和小球 1999年NOI全国竞赛 时间限制: 2 s 空间限制: 128000 KB 题目等级 : 大师 Master 题解 查看运行结果题目描述 Description有一个三角形木板 ...

  4. bzoj千题计划189:bzoj1867: [Noi1999]钉子和小球

    http://www.lydsy.com/JudgeOnline/problem.php?id=1867 dp[i][j] 落到(i,j)的方案数 dp[i][j]=0.5*dp[i-1][j]   ...

  5. 【OpenJudge 191】【POJ 1189】钉子和小球

    http://noi.openjudge.cn/ch0405/191/ http://poj.org/problem?id=1189 一开始忘了\(2^{50}\)没超long long差点写高精度Q ...

  6. POJ 1163 The Triangle(简单动态规划)

    http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

  7. 钉子和小球_DP

    Description 有一个三角形木板,竖直立放,上面钉着n(n+1)/2颗钉子,还有(n+1)个格子(当n=5时如图1).每颗钉子和周围的钉子的距离都等于d,每个格子的宽度也都等于d,且除了最左端 ...

  8. [POJ1189][BZOJ1867][CODEVS1709]钉子和小球

    题目描述 Description 有一个三角形木板,竖直立放,上面钉着n(n+1)/2颗钉子,还有(n+1)个格子(当n=5时如图1).每颗钉子和周围的钉子的距离都等于d,每个格子的宽度也都等于d,且 ...

  9. [POJ 1787]Charlie's Change (动态规划)

    题目链接:http://poj.org/problem?id=1787 题意:有4种货币分别是1元,5元,10元,20元.现在告诉你这四种货币分别有多少个,问你正好凑出P元钱最多可以用多少货币.每种货 ...

随机推荐

  1. application/x-www-form-urlencoded 的contentType,POST数据内容过大,导致tomcat的request取不到参数

    如题, 可通过设置tomcat的connector的参数 server.xml中的connector中加上属性 maxPostSize="20971520" maxPostSize ...

  2. while 1要小心

    之前判断一个接口的返回,一定约定好了是返回retcode 1或者retcode 0,就用的这个判断,但是接口挂了的时候,一直返回未登录,找了很长时间为什么cpu一直消耗那么高. 使用wihle 1时候 ...

  3. re.match re.search re.findall区别

    re正则表达式里面,常用的三种方法的区别. re.macth和search匹配得到的是match对象,findall得到的是一个列表. match从字符串开头开始匹配,search返回与正则表达式匹配 ...

  4. Track and Follow an Object----4

    原创博文:转载请标明出处(周学伟):http://www.cnblogs.com/zxouxuewei/tag/ ntroduction: 在本示例中,我们将探索包含Kinect摄像头的自主行为. 这 ...

  5. [Module] 08 - MVP by Mosby

    From: Mosby MVP使用教程[作者用心] View是消极视图(Passive View), 它尽量不去主动做事, 让Presenter通过抽象方式控制View 例子: 例如Presenter ...

  6. Linux+Redis实战教程_day02_3、redis数据类型_4、String命令_5、hash命令_6、java操作redis数据库技术

    3. redis数据类型[重点] redis 使用的是键值对保存数据.(map) key:全部都是字符串 value:有五种数据类型 Key名:自定义,key名不要过长,否则影响使用效率 Key名不要 ...

  7. webstrom 2017 安装及配置

    下载安装:http://www.jetbrains.com/webstorm/ 激活:安装完成后,在打开的 License Activation 窗口中选择 License server. 在输入框输 ...

  8. OpenGL资料

    苹果官方文档:OpenGL ES for iOS苹果官方文档:OpenGL for OS X OpenGL是源自SGI IRIS GL library,并不是SUN开发的.SGI提供了一个OPENGL ...

  9. 中间件安全加固之Jboss

    JBoss 的安全设置 1) jmx-console A.jmx-console登录的用户名和密码设置 默认情况访问 http://localhost:8080/jmx-console 就可以浏览jb ...

  10. sine曲线向前运动

    using UnityEngine; using System.Collections; public class sineWork : MonoBehaviour { float verticalS ...