【UVa】Partitioning by Palindromes(dp)
设w[i,j]为i-j能分割成的最少回文串
f[i]为前i个字符能够分成的最少回文串
w[i,j]=1 当w[i+1,j-1]==1 && s[i]==s[j] 或 i==j-1 && s[i]==s[j]
w[i,j]=w[i+1,j-1]+2 当s[i]!=s[j]
然后
f[i]=min{f[j]+w[j+1,i], 0<=j<i}
f[0]=0
题目白书有
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define pii pair<int, int>
#define mkpii make_pair<int, int>
#define pdi pair<double, int>
#define mkpdi make_pair<double, int>
#define pli pair<ll, int>
#define mkpli make_pair<ll, int>
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=1005;
int n, f[N], w[N][N];
char s[N];
int main() {
int cs=getint();
while(cs--) {
scanf("%s", s+1);
n=strlen(s+1);
CC(f, 0x3f); CC(w, 0); f[0]=0;
for1(i, 1, n) w[i][i]=1;
for1(k, 1, n-1)
for1(i, 1, n-k) {
int j=i+k;
if(k==1 && s[i]==s[j]) w[i][j]=1;
else if(k>1 && w[i+1][j-1]==1 && s[i]==s[j]) w[i][j]=1;
else w[i][j]=w[i+1][j-1]+2;
}
for1(i, 1, n) rep(j, i) f[i]=min(f[i], f[j]+w[j+1][i]);
printf("%d\n", f[n]);
}
return 0;
}
【UVa】Partitioning by Palindromes(dp)的更多相关文章
- 【BZOJ】1068: [SCOI2007]压缩(dp)
http://www.lydsy.com/JudgeOnline/problem.php?id=1068 发现如果只设一维的话无法转移 那么我们开第二维,发现对于前i个来说,如果确定了M在哪里,第i个 ...
- UVA 11584 "Partitioning by Palindromes"(DP+Manacher)
传送门 •题意 •思路一 定义 dp[i] 表示 0~i 的最少划分数: 首先,用马拉车算法求解出回文半径数组: 对于第 i 个字符 si,遍历 j (0 ≤ j < i),判断以 j 为回文中 ...
- 【51nod1519】拆方块[Codeforces](dp)
题目传送门:1519 拆方块 首先,我们可以发现,如果第i堆方块被消除,只有三种情况: 1.第i-1堆方块全部被消除: 2.第i+1堆方块全部被消除:(因为两侧的方块能够保护这一堆方块在两侧不暴露) ...
- 【bzoj1925】地精部落[SDOI2010](dp)
题目传送门:1925: [Sdoi2010]地精部落 这道题,,,首先可以一眼看出他是要我们求由1~n的排列组成,并且抖来抖去的序列的方案数.然后再看一眼数据范围,,,似乎是O(n^2)的dp?然后各 ...
- 【ZOJ2278】Fight for Food(dp)
BUPT2017 wintertraining(16) #4 F ZOJ - 2278 题意 给定一个10*10以内的地图,和p(P<=30000)只老鼠,给定其出现位置和时间T(T<=1 ...
- 【POJ】3616 Milking Time(dp)
Milking Time Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10898 Accepted: 4591 Des ...
- 【POJ】2385 Apple Catching(dp)
Apple Catching Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13447 Accepted: 6549 D ...
- 【vijos】1764 Dual Matrices(dp)
https://vijos.org/p/1764 自从心态好了很多后,做题的确很轻松. 这种题直接考虑我当前拿了一个,剩余空间最大能拿多少即可. 显然我们枚举每一个点拿出一个矩形(这个点作为右下角), ...
- 【Luogu】P3856公共子串(DP)
题目链接 DP.设last[i][j]是第i个串字符'j'所在的最后的位置,f[i][j][k]是第一个串匹配到i,第二个串匹配到j,第三个串匹配到k,最多的公共子串数. 那么我们三重循环i.j.k, ...
随机推荐
- Linux日志分析的实战专题
来自 日志也是用户应该注意的地方之一.不要低估日志文件对网络安全的重要作用,因为日志文件能够详细记录系统每天发生的各种各样的事件.用户可以通过日志文件 检查错误产生的原因,或者在受到攻击和黑客入侵 ...
- 【转发】Visual Studio 2013 如何关闭调试而不关闭IIS Express
在VS主面板打开:工具->选项->调试->编辑继续 取消选中[启用"编辑并继续"] 就OK了 (英文版的请对应相应的操作) 不过这是针对所有的调试,如果你想针 ...
- Spring 基于xml配置方式的事务
参考前面的声明式事务的例子:http://www.cnblogs.com/caoyc/p/5632198.html 我们做了相应的修改.在dao中和service中的各个类中,去掉所有注解标签.然后为 ...
- HBase源代码分析之HRegionServer上MemStore的flush处理流程(一)
在<HBase源代码分析之HRegion上MemStore的flsuh流程(一)>.<HBase源代码分析之HRegion上MemStore的flsuh流程(二)>等文中.我们 ...
- 【TP5.0】页面布局,引入公共的模版文件
1.实例:如后台admin模块,公用一个header.html和footer.hml 2.模块结构: 3.使用方式: {include file="common/header"} ...
- .Net Excel 导出图表Demo(柱状图,多标签页) .net工具类 分享一个简单的随机分红包的实现方式
.Net Excel 导出图表Demo(柱状图,多标签页) 1 使用插件名称Epplus,多个Sheet页数据应用,Demo为柱状图(Epplus支持多种图表) 2 Epplus 的安装和引用 新建一 ...
- 摘:LIB和DLL的区别与在VC中的使用
共有两种库:一种是LIB包含了函数所在的DLL文件和文件中函数位置的信息(入口),代码由运行时加载在进程空间中的DLL提供,称为动态链接库dynamic link library.一种是LIB包含函数 ...
- 【iOS开发-25】UIDevice查看系统信息,从一个问题開始怎样高速找到自己想要的属性和方法并看懂它
如果须要解决的问题:写代码时遇到一种情况,就是须要推断iOS版本号,可能低版本号和高版本号须要增减一些代码,此时.怎样推断iOS版本号? (1)第一步.当然度娘.输入"iOS 推断系统版本号 ...
- C# 类型转换,序列化
string转byte[]: byte[] byteArray = System.Text.Encoding.Default.GetBytes ( str ); byte[]转string: stri ...
- 什么是Coded UI
什么是Coded UI Coded UI Test是Visual Studio 2010对于Testing Project(测试工程)提供的关于UI自动化测试的框架,支持Win32,Web,WPF等U ...