题目链接:https://leetcode.com/problems/container-with-most-water/description/

题目大意:给出一串数组(a1, a2, a3, ...an),表示坐标(i, ai),同样表示一条直线是从(i, 0)到(i, ai),从中选出两条直线,计算其容器能蓄水多少,并找出最多的蓄水量。(容器不能倾斜,就是两条直线可以是不同高度,但是蓄水量要按照低高度的那条直线来计算),例子如下:

法一:暴力,对于一条直线,分别遍历左边和右边直线,计算其蓄水量,取最大者。可惜超时了。代码如下:

     public int maxArea(int[] height) {
int res = 0;
for(int i = 0; i < height.length; i++) {
//计算左边直线
for(int j = height.length - 1; j > i; j--) {
if(height[j] >= height[i]) {
res = Math.max(res, (j - i) * height[i]);
break;
}
}
//计算右边直线
for(int j = 0; j < i; j++) {
if(height[j] >= height[i]) {
res = Math.max(res, (i - j) * height[i]);
break;
}
}
}
return res;
}

法二:两指针移动,与42题的两指针移动类似但略有区别,左指针与右指针相比较,记录较大者,若左指针较小,则从左往右移动,若右指针较小,则从右往左移动,如果当前值比较大者大,则计算:(较大者下标-当前值下标)*当前值高度,计算得到最后的结果。代码如下(耗时8ms):

     public int maxArea(int[] height) {
int res = 0, left = 0, right = height.length - 1;
while(left < right) {
//如果左指针<=右指针
if(height[left] <= height[right]) {
while(left < right && height[left] <= height[right]) {
res = Math.max(res, (right - left) * height[left++]);
}
}
//如果左指针>右指针
else {
while(left < right && height[left] > height[right]) {
res = Math.max(res, (right - left) * height[right--]);
}
}
}
return res;
}

11.Container With Most Water---两指针的更多相关文章

  1. leetcode 11. Container With Most Water 、42. Trapping Rain Water 、238. Product of Array Except Self 、407. Trapping Rain Water II

    11. Container With Most Water https://www.cnblogs.com/grandyang/p/4455109.html 用双指针向中间滑动,较小的高度就作为当前情 ...

  2. LeetCode Array Medium 11. Container With Most Water

    Description Given n non-negative integers a1, a2, ..., an , where each represents a point at coordin ...

  3. 刷题11. Container With Most Water

    一.题目说明 11.Container With Most Water,这个题目难度是Medium. 二.我的做法 乍一看,简单啊,两个for循环就可以了,我在本地写的. #include<io ...

  4. Leetcode 11. Container With Most Water(逼近法)

    11. Container With Most Water Medium Given n non-negative integers a1, a2, ..., an , where each repr ...

  5. 《LeetBook》leetcode题解(11):Container With Most Water[M] ——用两个指针在数组内移动

    我现在在做一个叫<leetbook>的免费开源书项目,力求提供最易懂的中文思路,目前把解题思路都同步更新到gitbook上了,需要的同学可以去看看 书的地址:https://hk029.g ...

  6. 如何装最多的水? — leetcode 11. Container With Most Water

    炎炎夏日,还是呆在空调房里切切题吧. Container With Most Water,题意其实有点噱头,简化下就是,给一个数组,恩,就叫 height 吧,从中任选两项 i 和 j(i <= ...

  7. [leecode]---11.container with most water

    description: Input: [1,8,6,2,5,4,8,3,7]Output: 49 思路1: 从(1,a1)开始向后算面积,需要两层n循环,时间复杂度n2 思路2: 找出数组中最大的数 ...

  8. [LeetCode] 11. Container With Most Water 装最多水的容器

    Given n non-negative integers a1, a2, ..., an , where each represents a point at coordinate (i, ai). ...

  9. leetcode problem 11 Container With Most Water

    Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai). ...

  10. LeetCode 11. Container With Most Water (装最多水的容器)

    Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai).  ...

随机推荐

  1. 【Java】SVN下载maven项目到eclipse之后,项目红叉,pom.xml出现Missing artifact fakepath:dubbo:jar:2.8.5等缺少jar包情况

    刚入公司,从svn上把代码弄下来之后导入eclipse,一般是maven项目,往往项目都会有红叉.如果排除代码本身问题,一般是jar包没有. 鼠标点开pom.xml文件,在约束那里一般有红叉,鼠标放上 ...

  2. 【MediaElement】WPF视频播放器【2】

    一.前言       上回说到需要做放视频的使用向导,这两天公司里的老司机一直帮我答疑解惑,让这个任务变得挺顺的,真心感谢他们! 这次与[1]中的不同之处在于: (1)播放和暂停按钮集成在<Me ...

  3. Hbase(三) hbase协处理器与二级索引

    一.协处理器—Coprocessor 1. 起源Hbase 作为列族数据库最经常被人诟病的特性包括:无法轻易建立“二级索引”,难以执 行求和.计数.排序等操作.比如,在旧版本的(<0.92)Hb ...

  4. C之Volatile关键字的介绍与使用20170724

    volatile 的意思是“易失的,易改变的”. 一.volatile的引入 这个限定词的含义是向编译器指明变量的内容可能会由于其他程序的修改而变化.通常在程序中申明了一个变量时,编译器会尽量把它存放 ...

  5. css美化Div边框的样式实例

    很多时候如果不是用了很多样式,很难把边框修饰得好看,看了一篇博文,觉得真的挺漂亮,也挺好看. 转载的博文地址 将这段美化的css代码 border:1px solid #96c2f1;backgrou ...

  6. PID控制算法的C语言实现四 增量型PID的C语言实现

    /*------------------------------------------- 2 位置型PID C实现(控制电机转速) --------------------------------- ...

  7. 学习 opencv---(12)OpenCV 图像金字塔:高斯金字塔,拉普拉斯金字塔与图片尺寸缩放

    在这篇文章里,我们一起学习下 图像金字塔 的一些基本概念,如何使用OpenCV函数pyrUp和pyrDown 对图像进行向上和向下采样,以及了解专门用于缩放图像尺寸的resize函数的用法.此博文一共 ...

  8. Square Country

    原题链接:http://acm.timus.ru/problem.aspx?space=1&num=1073 分析:dp,dp[i]表示钱为i且恰好用完时能买的最少土地数,易知dp[i]=mi ...

  9. Linux常用网络工具:路由扫描之traceroute

    之前两篇<Linux常用网络工具:fping主机扫描>和<Linux常用网络工具:hping高级主机扫描>都是关于主机扫描的,本篇介绍Linux下常用的路由扫描工具tracer ...

  10. Java中的Class.forName

    在做JAVA EE开发的过程中,更多的是使用框架来提高开发效率.越来越发现,之前很基础的一些东西,都忘记的差不多了.从今天开始慢慢的复习一下基础.今天在看JDBC的时候,就有一个有趣的地方,之前学的时 ...