Let's examine a pointfree way to write these applicative calls. Since we know map is equal to of/ap, we can write generic functions that will ap as many times as we specify:

const liftA2 = curry((g, f1, f2) => f1.map(g).ap(f2));

const liftA3 = curry((g, f1, f2, f3) => f1.map(g).ap(f2).ap(f3));

// liftA4, etc

Let's see the previous examples written this way:

const profile = name => email => `${name}__${email}`;
const safeProfile = liftA2(profile);
const res1 = safeProfile(prop('name', user), prop('email', user)); // John Doe__blurp_blurp
liftA2(add, Maybe.of(), Maybe.of());
// Maybe(5) liftA2(renderPage, Http.get('/destinations'), Http.get('/events'));
// Task('<div>some page with dest and events</div>') liftA3(signIn, getVal('#email'), getVal('#password'), IO.of(false));
// IO({ id: 3, email: 'gg@allin.com' })

liftAN: Lift a curry function into a Functor context, which will be define later;

liftA2(add, Maybe.of(2), Maybe.of(3)); Maybe will be the Functor context for 'add' function which has been lifted

Laws:

Identity

// identity
A.of(id).ap(v) === v;

For example:

const v = Identity.of('Pillow Pets');
Identity.of(id).ap(v) === v;

Homomorphism

// homomorphism
A.of(f).ap(A.of(x)) === A.of(f(x));

homomorphism is just a structure preserving map. In fact, a functor is just a homomorphism between categories as it preserves the original category's structure under the mapping.

A quick example:

Either.of(toUpperCase).ap(Either.of('oreos')) === Either.of(toUpperCase('oreos'));

Interchange

The interchange law states that it doesn't matter if we choose to lift our function into the left or right side of ap.

// interchange
v.ap(A.of(x)) === A.of(f => f(x)).ap(v);

Here is an example:

const v = Task.of(reverse);
const x = 'Sparklehorse'; v.ap(Task.of(x)) === Task.of(f => f(x)).ap(v);

Composition

// composition
A.of(compose).ap(u).ap(v).ap(w) === u.ap(v.ap(w));
const u = IO.of(toUpperCase);
const v = IO.of(concat('& beyond'));
const w = IO.of('blood bath '); IO.of(compose).ap(u).ap(v).ap(w) === u.ap(v.ap(w));

Examples:

const safeAdd = curry((a, b) => Maybe.of(add).ap(a).ap(b));
const safeAdd = liftA2(add); const localStorage = {
player1: { id:, name: 'Albert' },
player2: { id:, name: 'Theresa' },
}; // getFromCache :: String -> IO User
const getFromCache = x => new IO(() => localStorage[x]); // game :: User -> User -> String
const game = curry((p1, p2) => `${p1.name} vs ${p2.name}`);
// startGame :: IO String
const startGame = liftA2(game, getFromCache('player1'), getFromCache('player2'));

[Functional Programming] Working with two functors(Applicative Functors)-- Part2 --liftAN的更多相关文章

  1. [Functional Programming] Working with two functors(Applicative Functors)-- Part1 --.ap

    What is applicative functor: the ability to apply functors to each other. For example we have tow fu ...

  2. UCF Local Programming Contest 2016 J题(二分+bfs)

    题目链接如下: https://nanti.jisuanke.com/t/43321 思路: 显然我们要采用二分的方法来寻找答案,给定一个高度如果能确定在这个高度时是否可以安全到达终点,那我们就可以很 ...

  3. Programming | 中/ 英文词频统计(MATLAB实现)

    一.英文词频统计 英文词频统计很简单,只需借助split断句,再统计即可. 完整MATLAB代码: function wordcount %思路:中文词频统计涉及到对"词语"的判断 ...

  4. Coursera Algorithms Programming Assignment 4: 8 Puzzle (100分)

    题目原文:http://coursera.cs.princeton.edu/algs4/assignments/8puzzle.html 题目要求:设计一个程序解决8 puzzle问题以及该问题的推广 ...

  5. Coursera Algorithms Programming Assignment 3: Pattern Recognition (100分)

    题目原文详见http://coursera.cs.princeton.edu/algs4/assignments/collinear.html 程序的主要目的是寻找n个points中的line seg ...

  6. The 2019 Asia Nanchang First Round Online Programming Contest C. Hello 2019(动态dp)

    题意:要找到一个字符串里面存在子序列9102 而不存在8102 输出最小修改次数 思路:对于单次询问 我们可以直接区间dpOn求出最小修改次数 但是对于多次询问 我在大部分题解看到的解释一般是用线段树 ...

  7. Functional Programming 资料收集

    书籍: Functional Programming for Java Developers SICP(Structure and Interpretation of Computer Program ...

  8. Sth about 函数式编程(Functional Programming)

    今天开会提到了函数式编程,针对不同类型的百年城方式,查阅了一部分资料,展示如下: 编程语言一直到近代,从汇编到C到Java,都是站在计算机的角度,考虑CPU的运行模式和运行效率,以求通过设计一个高效的 ...

  9. iOS 开发之函数式编程思想(Functional Programming)

    函数式编程(Functional Programming), 函数式编程强调的函数:1.不依赖外部状态:2.不改变外部状态. 函数式编程可解决线程安全问题,每一个函数都是线程安全的. 时间状态:变量一 ...

随机推荐

  1. 【记录】mysql 无法启动 : NET HELPMSG 3523

    mysql 无法启动 : NET HELPMSG 3523后来注意到mysql 配置文件的格式是 utf-8 还是有bom的utf-8 bom格式前面会多出一些看不见的字符,所以mysql读取配置文件 ...

  2. Xamarin 2017.9.19更新

     Xamarin 2017.9.19更新   本次更新是添加Xamarin.iOS对iOS 11和Xcode 9的支持.Visual Studio 2017升级到15.3.5获得更新功能.Visual ...

  3. FastReport.Net使用:[9]多栏报表(多列报表)

    方法一:使用页的列属性(Page Columns) 1.绘制报表标题 2.设置页的列数量为3,其他默认不变.报表设计界面便如下呈现. 3.报表拷贝前面[分组]报表的内容. 4.就这么简单,一张多栏报表 ...

  4. [BZOJ1040][ZJOI2008]骑士(环套树dp)

    1040: [ZJOI2008]骑士 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5816  Solved: 2263[Submit][Status ...

  5. arraylist-lambada-性能测试

    package cn.com.one;import java.util.ArrayList;public class ttt { public static void main(String [] a ...

  6. noip模拟 五子棋

    递推+模拟.在读取数据时,我们建4个图,分别代表这个图中横.纵.左斜右斜的连续长度.例如heng[i][j]代表ij这个点所在的横着一条线的长度. 然后搜索,对于一个空点,如果他的上下都>=4那 ...

  7. 更新teaching中fdSubjectID为null的老数据

    UPDATE wkwke.tbTeachingV3 teaching SET teaching.fdSubjectID = (                    SELECT fdValue FR ...

  8. PEM DAC note

    开发指南V1.0库函数版本,PWM DAC实验 350页 STM32 的定时器最快的计数频率是72Mhz,8 为分辨率的时候,PWM 频率为72M/256=281.25Khz.如果是1阶RC滤波,则要 ...

  9. Homebrew-macOS缺失的软件包管理器(简称brew)

    [简介] brew又叫Homebrew,是Mac OSX上的软件包管理工具,能在Mac中方便的安装软件或者卸载软件,只需要一个简单的命令,非常方便 [遇到的问题] 在真正了解软件包管理工具之前,一直是 ...

  10. zookeeper疑难杂症

    1.zookeeper是怎么写数据的?因为是master写再同步广播到follow节点,如果master写完,following在写的过程中出现失败怎么办? :zookeeper支持原子的写入操作,要 ...