题意

给出一个n个数字的序列,找出相同变化趋势且不重叠的两个最长子串。

分析

这个题以前应该用后缀数组+二分做过。学了后缀自动机后可以用后缀自动机搞一下。

先差分,然后把查分后的数组建SAM。然后对于每个状态记录一个l[u],和r[u],分别代表right集合中,最大的v和最小的v。(这里如果不明白可以去看clj的课件)。

然后对于每个状态,当这个状态cnt[u]>=2的时候,说明有两个以上的子串,然后min(st[u].len,r[u]-l[u])就是这个状态最长不重叠相同子串的长度。

 #include <cstring>
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <map>
using namespace std;
const int maxn=+;
const int INF=;
int s[maxn],a[maxn],n;
struct state{
int len,link;
int next[];
}st[*maxn];
int last,cur,sz;
int cnt[*maxn],l[*maxn],r[*maxn],c[*maxn];
void init(){
sz=;
last=cur=;
st[].len=;
st[].link=-;
memset(st[].next,,sizeof(st[].next));
} void build_sam(int c,int pos){
cur=sz++;
st[cur].len=st[last].len+;
cnt[cur]=;
l[cur]=r[cur]=pos;
memset(st[cur].next,,sizeof(st[cur].next));
int p;
for(p=last;p!=-&&st[p].next[c]==;p=st[p].link)
st[p].next[c]=cur;
if(p==-)
st[cur].link=;
else{
int q=st[p].next[c];
if(st[q].len==st[p].len+)
st[cur].link=q;
else{
int clone=sz++;
cnt[clone]=r[clone]=;
l[clone]=;
st[clone].len=st[p].len+;
//printf("%d ",st[clone].len);
st[clone].link=st[q].link;
memcpy(st[clone].next,st[q].next,sizeof(st[clone].next));
for(;p!=-&&st[p].next[c]==q;p=st[p].link){
st[p].next[c]=clone;
}
st[cur].link=st[q].link=clone;
}
}
last=cur;
}
int cmp(int a,int b){
return st[a].len>st[b].len;
} int ans=;
int main(){
while(scanf("%d",&n)!=EOF&&n){
for(int i=;i<=n;i++){
scanf("%d",&s[i]);
a[i]=s[i]-s[i-];
}
init();
for(int i=;i<=n;i++){
build_sam(a[i]+,i);
//printf("%d ",a[i]);
}
// for(int i=0;i<sz;i++)
// printf("%d ",st[i].len);
// printf("\n");
for(int i=;i<sz;i++)
c[i]=i;
sort(c,c+sz,cmp);
ans=;
for(int i=;i<sz;i++){
int o=c[i];
if(st[o].link!=-){
cnt[st[o].link]+=cnt[o];
l[st[o].link]=min(l[st[o].link],l[o]);
r[st[o].link]=max(r[st[o].link],r[o]);
}
// printf("%d %d %d %d\n",cnt[o],st[o].len,l[o],r[o]);
if(cnt[o]>=&&min(st[o].len,r[o]-l[o])>=){
//printf("%d %d\n",l[o],r[o]);
ans=max(ans,min(st[o].len,r[o]-l[o]));
}
}
if(ans<)
printf("0\n");
else
printf("%d\n",ans+);
}
return ;
}

【poj1743】Musical Theme 【后缀自动机】的更多相关文章

  1. POJ1743 Musical Theme [后缀自动机]

    题意:不重叠最长重复子串 后缀数组做法:http://www.cnblogs.com/candy99/p/6227659.html 后缀自动机的话,首先|Right|>=2 然后min(t[u] ...

  2. POJ1743 Musical Theme —— 后缀数组 重复出现且不重叠的最长子串

    题目链接:https://vjudge.net/problem/POJ-1743 Musical Theme Time Limit: 1000MS   Memory Limit: 30000K Tot ...

  3. POJ1743 Musical Theme [后缀数组]

    Musical Theme Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 27539   Accepted: 9290 De ...

  4. POJ1743 Musical Theme [后缀数组+分组/并查集]

    Musical Theme Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 27539   Accepted: 9290 De ...

  5. poj 1743 Musical Theme 后缀自动机/后缀数组/后缀树

    题目大意 直接用了hzwer的题意 题意:有N(1 <= N <=20000)个音符的序列来表示一首乐曲,每个音符都是1..88范围内的整数,现在要找一个重复的主题."主题&qu ...

  6. POJ1743 Musical Theme(后缀数组 二分)

    Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 33462   Accepted: 11124 Description A m ...

  7. POJ-1743 Musical Theme(后缀数组)

    题目大意:给一个整数序列,找出最长的连续变化相同的.至少出现两次并且不相重叠一个子序列. 题目分析:二分枚举长度进行判定. 代码如下: # include<iostream> # incl ...

  8. poj1743 Musical Theme 后缀数组的应用(求最长不重叠重复子串)

    题目链接:http://poj.org/problem?id=1743 题目理解起来比较有困难,其实就是求最长有N(1 <= N <=20000)个音符的序列来表示一首乐曲,每个音符都是1 ...

  9. POJ1743 Musical Theme (后缀数组 & 后缀自动机)最大不重叠相似子串

    A musical melody is represented as a sequence of N (1<=N<=20000)notes that are integers in the ...

  10. poj1743 Musical Theme【后缀数组】【二分】

    Musical Theme Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 35044   Accepted: 11628 D ...

随机推荐

  1. 一个解决在非UI线程中访问UI 异常的小方法

    写 WPF 的童鞋可能都会碰到 在非UI线程中访问 UI 异常的问题.这是为了防止数据不一致做的安全限制. 子线程中更新UI还要交给主线程更新,引用满天飞,实在是麻烦. 接下来,我们推出一个可以称之为 ...

  2. C#实现 OPC历史数据存取研究

    来源:http://blog.csdn.net/gjack/article/details/5641794 C#实现 OPC历史数据存取研究 (原文)Research of Accessing the ...

  3. linux下mysql提示"mysql deamon failed to start"错误的解决方法

    操作系统为centos,网站突然连接不上数据库,于是朋友直接重启了一下服务器.进到cli模式下,执行 service myqsld start 发现还是提示"mysql deamon fai ...

  4. Msys2+mingw-w64 编译VS2013使用的ffmpeg静态库注意事项

    1.环境准备 第一步:从http://sourceforge.net/projects/msys2/下载msys2的安装程序安装msys2; 第二步:通过msys2的包管理工具pacman安装ming ...

  5. Jquery 监听浏览器前进后退

    jQuery(document).ready(function () { if (window.history && window.history.pushState) { $(win ...

  6. java代码-----------继承练习

    总结:父类和子类拥有相同的 方法时,父类的方法被覆盖,子类 package com.sads; class fong { void pprint() { this.print(); this.prin ...

  7. Docker Toolbox常见错误解决方案

    错误1 Error checking TLS connection: Error checking and/or regenerating the certs: There was an error ...

  8. Java安全 – JCE Blowfish算法报错

    代码里用Blowfish算法加解密,结果jdk升到1.7后算法初始化失败 java.lang.RuntimeException: java.lang.RuntimeException: PANIC: ...

  9. 解决: Project facet Java version 1.8 is not supported

    背景 从别处Import一个Java project之后,Eclipse提示“Project facet Java version 1.8 is not supported”. 分析 从错误的描述来看 ...

  10. java做web抓取

    就像许多现代科技一样,从网站提取信息这一功能也有多个框架可以选择.最流行的有JSoup.HTMLUnit和Selenium WebDriver.我们这篇文章讨论JSoup.JSoup是个开源项目,提供 ...