在处理fMRI数据时,使用空间ICA的方法。
 
将一个四维的fMRI数据分解为空间pattern与时间序列的乘积。 //这里的pattern=component
 
其中每一pattern的时间序列是该pattern中强度(z-score值)最大的voxel的时间序列。//取component中z值最大的voxel的timecourse作为此pattern的timecourse
 
该pattern中剩余voxel的时间序列与最大voxel的时间序列的相关性逐渐降低。对应在pattern中就是剩余voxel的z-score值降低。
 
因此pattern其实是一个脑网络,可以理解为以最大z-score值也就是peak value与全脑求功能连接得到的连接图。
 
如果用一个pattern中的peak value为圆心,做ROI,求全脑功能连接,得到的功能连接图fc map与ICA求得的pattern是十分相似的。
                                                  // fc map= functional map
 
ROI的半径越小,fc map与ICA pattern越相似。
 
因此在比较前后两次静息态扫描(中间是任务态的学习)某一个网络的变化,可以使用空间ICA找到该网络进行配对检验也可以前后计算fc map来配对检验。
 
二者结果理论上应该是比较接近的。
 
之所以说二者结果接近而不是一致是因为前后两次扫描可能会导致peak value所在的voxel不一样,如第一次在voxelA,第二次在voxelB,另外数据中也存在些噪音还有头动等都会影响结果。
 
空间ICA得到的pattern在空间上是独立的,也就是空间不重合的。因此每一个pattern就构成了一个脑网络,它们在空间上是不重合的。

独立成分分析 与 功能连接之间的关联尝试 by 张高燕的更多相关文章

  1. Topographic ICA as a Model of Natural Image Statistics(作为自然图像统计模型的拓扑独立成分分析)

    其实topographic independent component analysis 早在1999年由ICA的发明人等人就提出了,所以不算是个新技术,ICA是在1982年首先在一个神经生理学的背景 ...

  2. 机器学习 —— 基础整理(四)特征提取之线性方法:主成分分析PCA、独立成分分析ICA、线性判别分析LDA

    本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensiona ...

  3. PCA主成分分析 ICA独立成分分析 LDA线性判别分析 SVD性质

    机器学习(8) -- 降维 核心思想:将数据沿方差最大方向投影,数据更易于区分 简而言之:PCA算法其表现形式是降维,同时也是一种特征融合算法. 对于正交属性空间(对2维空间即为直角坐标系)中的样本点 ...

  4. 斯坦福ML公开课笔记15—隐含语义索引、神秘值分解、独立成分分析

    斯坦福ML公开课笔记15 我们在上一篇笔记中讲到了PCA(主成分分析). PCA是一种直接的降维方法.通过求解特征值与特征向量,并选取特征值较大的一些特征向量来达到降维的效果. 本文继续PCA的话题, ...

  5. ICA (独立成分分析)

    介绍 独立成分分析(ICA,Independent Component Correlation Algorithm)简介 X=AS X为n维观测信号矢量,S为独立的m(m<=n)维未知源信号矢量 ...

  6. 独立成分分析 ICA 原理及公式推导 示例

    独立成分分析(Independent component analysis) 前言 独立成分分析ICA是一个在多领域被应用的基础算法.ICA是一个不定问题,没有确定解,所以存在各种不同先验假定下的求解 ...

  7. Independent Components Analysis:独立成分分析

    一.引言 ICA主要用于解决盲源分离问题.需要假设源信号之间是统计独立的.而在实际问题中,独立性假设基本是合理的. 二.随机变量独立性的概念 对于任意两个随机变量X和Y,如果从Y中得不到任何关于X的信 ...

  8. 独立成分分析(ICA)在fMRI数据处理时timecourse的理解

    来源: http://blog.sciencenet.cn/blog-479412-434990.html   在处理fMRI数据时,使用空间ICA的方法.将一个四维的fMRI数据分解为空间patte ...

  9. 独立成分分析(Independent Component Analysis)

    ICA是一种用于在统计数据中寻找隐藏的因素或者成分的方法.ICA是一种广泛用于盲缘分离的(BBS)方法,用于揭示随机变量或者信号中隐藏的信息.ICA被用于从混合信号中提取独立的信号信息.ICA在20世 ...

随机推荐

  1. 20165301 2017-2018-2 《Java程序设计》第二周学习总结

    20165301 2017-2018-2 <Java程序设计>第二周学习总结 教材学习内容总结 第二章:基本数据类型与数组 标识符 第一个字符不能是数字 不能是关键字 不能是true.fa ...

  2. js自动检索输入文章长度

    1. 代码 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF ...

  3. MySQL----示例知识点整理

    示例语句: ),hour(c.created_at) from `behavior_client_view` c join `behavior_share` s on c.share_uuid=s.u ...

  4. 【PAT】1006. 换个格式输出整数 (15)

    1006. 换个格式输出整数 (15) 让我们用字母B来表示“百”.字母S表示“十”,用“12...n”来表示个位数字n(<10),换个格式来输出任一个不超过3位的正整数.例如234应该被输出为 ...

  5. day4 递归原理及解析

    递归 递归是一种调用自身的方法,在函数执行过程中重复不断的调用自身的过程,递归的规模每次都要缩小,一般前一步的程序作为后一步的参数.但是必须有递归结束条件. 递归算法是一种直接或者间接地调用自身算法的 ...

  6. shell-sed命令详解(转)

    (转自http://blog.csdn.net/wl_fln/article/details/7281986) Sed简介 sed是一种在线编辑器,它一次处理一行内容.处理时,把当前处理的行存储在临时 ...

  7. 2017-2018-1 20179202《Linux内核原理与分析》第二周作业

    本周着重学习了汇编指令,并通过反汇编C程序了解栈帧变化. 实践 看了孟老师的演示视频后,我重新写了C程序,如下: int main() { int a=1,b=2; return g(a,b); } ...

  8. Python上下文管理器(context manager)

    上下文管理器(context manager)是Python2.5开始支持的一种语法,用于规定某个对象的使用范围.一旦进入或者离开该使用范围,会有特殊操作被调用 (比如为对象分配或者释放内存).它的语 ...

  9. post登录趴一趴百度贴吧美女

    本次爬取的贴吧是百度的美女吧,给广大男同胞们一些激励 在爬取之前需要在浏览器先登录百度贴吧的帐号,各位也可以在代码中使用post提交或者加入cookie 爬行地址:http://tieba.baidu ...

  10. Socket学习笔记(一)

    1.socket介绍 我们知道两个进程如果需要进行通讯最基本的一个前提能能够唯一的标示一个进程,在本地进程通讯中我们可以使用PID来唯一标示一个进程,但PID只在本地唯一,网络中的两个进程PID冲突几 ...