POJ 1755 Triathlon (半平面交)
|
Triathlon
Description Triathlon is an athletic contest consisting of three consecutive sections that should be completed as fast as possible as a whole. The first section is swimming, the second section is riding bicycle and the third one is running.
The speed of each contestant in all three sections is known. The judge can choose the length of each section arbitrarily provided that no section has zero length. As a result sometimes she could choose their lengths in such a way that some particular contestant would win the competition. Input The first line of the input file contains integer number N (1 <= N <= 100), denoting the number of contestants. Then N lines follow, each line contains three integers Vi, Ui and Wi (1 <= Vi, Ui, Wi <= 10000), separated by spaces, denoting the speed of ith contestant in each section.
Output For every contestant write to the output file one line, that contains word "Yes" if the judge could choose the lengths of the sections in such a way that this particular contestant would win (i.e. she is the only one who would come first), or word "No" if this is impossible.
Sample Input 9 Sample Output Yes Source |
这题坑了很久,总感觉有问题。
精度开到1e-18才过
/* ***********************************************
Author :kuangbin
Created Time :2013/8/18 19:47:45
File Name :F:\2013ACM练习\专题学习\计算几何\半平面交\POJ1755_2.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
const double eps = 1e-;
int sgn(double x)
{
if(fabs(x) < eps)return ;
if(x < )return -;
else return ;
}
struct Point
{
double x,y;
Point(){}
Point(double _x,double _y)
{
x = _x; y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x, y - b.y);
}
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
};
//计算多边形面积
double CalcArea(Point p[],int n)
{
double res = ;
for(int i = ;i < n;i++)
res += (p[i]^p[(i+)%n]);
return fabs(res/);
}
//通过两点,确定直线方程
void Get_equation(Point p1,Point p2,double &a,double &b,double &c)
{
a = p2.y - p1.y;
b = p1.x - p2.x;
c = p2.x*p1.y - p1.x*p2.y;
}
//求交点
Point Intersection(Point p1,Point p2,double a,double b,double c)
{
double u = fabs(a*p1.x + b*p1.y + c);
double v = fabs(a*p2.x + b*p2.y + c);
Point t;
t.x = (p1.x*v + p2.x*u)/(u+v);
t.y = (p1.y*v + p2.y*u)/(u+v);
return t;
}
Point tp[];
void Cut(double a,double b,double c,Point p[],int &cnt)
{
int tmp = ;
for(int i = ;i <= cnt;i++)
{
//当前点在左侧,逆时针的点
if(a*p[i].x + b*p[i].y + c < eps)tp[++tmp] = p[i];
else
{
if(a*p[i-].x + b*p[i-].y + c < -eps)
tp[++tmp] = Intersection(p[i-],p[i],a,b,c);
if(a*p[i+].x + b*p[i+].y + c < -eps)
tp[++tmp] = Intersection(p[i],p[i+],a,b,c);
}
}
for(int i = ;i <= tmp;i++)
p[i] = tp[i];
p[] = p[tmp];
p[tmp+] = p[];
cnt = tmp;
}
double V[],U[],W[];
int n;
const double INF = 100000000000.0;
Point p[];
bool solve(int id)
{
p[] = Point(,);
p[] = Point(INF,);
p[] = Point(INF,INF);
p[] = Point(,INF);
p[] = p[];
p[] = p[];
int cnt = ;
for(int i = ;i < n;i++)
if(i != id)
{
double a = (V[i] - V[id])/(V[i]*V[id]);
double b = (U[i] - U[id])/(U[i]*U[id]);
double c = (W[i] - W[id])/(W[i]*W[id]);
if(sgn(a) == && sgn(b) == )
{
if(sgn(c) >= )return false;
else continue;
}
Cut(a,b,c,p,cnt);
}
if(sgn(CalcArea(p,cnt)) == )return false;
else return true;
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
while(scanf("%d",&n) == )
{
for(int i = ;i < n;i++)
scanf("%lf%lf%lf",&V[i],&U[i],&W[i]);
for(int i = ;i < n;i++)
{
if(solve(i))printf("Yes\n");
else printf("No\n");
}
}
return ;
}
POJ 1755 Triathlon (半平面交)的更多相关文章
- POJ 1755 Triathlon 半平面交
看的这里:http://blog.csdn.net/non_cease/article/details/7820361 题意:铁人三项比赛,给出n个人进行每一项的速度vi, ui, wi; 对每个人 ...
- POJ 3130 How I Mathematician Wonder What You Are! /POJ 3335 Rotating Scoreboard 初涉半平面交
题意:逆时针给出N个点,求这个多边形是否有核. 思路:半平面交求多边形是否有核.模板题. 定义: 多边形核:多边形的核可以只是一个点,一条直线,但大多数情况下是一个区域(如果是一个区域则必为 ).核内 ...
- POJ 3384 Feng Shui 半平面交
题目大意:一个人很信"Feng Shui",他要在房间里放两个圆形的地毯. 这两个地毯之间可以重叠,可是不能折叠,也不能伸到房间的外面.求这两个地毯可以覆盖的最大范围.并输出这两个 ...
- POJ 1755 Triathlon
http://poj.org/problem?id=1755 题意:铁人三项,每个人有自己在每一段的速度,求有没有一种3条路线长度都不为0的设计使得某个人能严格获胜? 我们枚举每个人获胜,得到不等式组 ...
- 【kuangbin专题】计算几何_半平面交
1.poj3335 Rotating Scoreboard 传送:http://poj.org/problem?id=3335 题意:就是有个球场,球场的形状是个凸多边形,然后观众是坐在多边形的边上的 ...
- POJ 1755 Triathlon(线性规划の半平面交)
Description Triathlon is an athletic contest consisting of three consecutive sections that should be ...
- 【BZOJ-4515】游戏 李超线段树 + 树链剖分 + 半平面交
4515: [Sdoi2016]游戏 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 304 Solved: 129[Submit][Status][ ...
- poj3335 半平面交
题意:给出一多边形.判断多边形是否存在一点,使得多边形边界上的所有点都能看见该点. sol:在纸上随手画画就可以找出规律:按逆时针顺序连接所有点.然后找出这些line的半平面交. 题中给出的点已经按顺 ...
- POJ3525 半平面交
题意:求某凸多边形内部离边界最远的点到边界的距离 首先介绍半平面.半平面交的概念: 半平面:对于一条有向直线,它的方向的左手侧就是它所划定的半平面范围.如图所示: 半平面交:多个半平面的交集.有点类似 ...
- bzoj2618[Cqoi2006]凸多边形 半平面交
这是一道半平面交的裸题,第一次写半平面交,就说一说我对半平面交的理解吧. 所谓半平面交,就是求一大堆二元一次不等式的交集,而每个二元一次不等式的解集都可以看成是在一条直线的上方或下方,联系直线的标准方 ...
随机推荐
- HOJ 1108
题目链接:HOJ-1108 题意为给定N和M,找出最小的K,使得K个N组成的数能被M整除.比如对于n=2,m=11,则k=2. 思路是抽屉原理,K个N组成的数modM的值最多只有M个. 具体看代码: ...
- windows下安装多个mysql
1.正常安装mysql5.1.33 安装服务名为mysql3306 安装目录d:\mysql5.1\3306 安装完成后,关闭服务 ① 复制安装文件 将默认安装目录C:\Documents and S ...
- HTML文件编码
为了防止中文乱码,一般在网页头文件中加入 <meta http-equiv="Content-Type" content="text/html; charset=u ...
- NTP详解-转
网管实战:Linux时间服务器配置 [IT168 专稿]目前计算机网络中各主机和服务器等网络设备的时间基本处于无序的状态.随着计算机网络应用的不断涌现,计算机的时间同步问题成为愈来愈重要的事情.以Un ...
- Logistic回归与梯度上升算法
原创作品出处 原始出处 .作者信息和本声明.否则将追究法律责任.http://sbp810050504.blog.51cto.com/2799422/1608064 Logistic回归与梯度上升算法 ...
- php强制输出到浏览器下载
$file_name="test.mp3"; $mp3_url = "";header( "Pragma: public" );header ...
- 用js 的for循环打印三角形,提取水仙花数,求本月多少天
第一题:用for循环打印三角形 //第一个 for(var x = 1;x <= 4;x++){ //控制行数 :由 1 到 4 for(var y = 1;y <= x;y++){ // ...
- vue配置二级目录&vue-axios跨域办法&谷歌浏览器设置跨域
一.根据官方建议,dist打包的项目文件放在服务器根目录下,但是很多时候,我们并不能这样做,当涉及到二级目录设置多层深埋的时候,就需要在webpack配置文件里去设置一下了. 在webpack.con ...
- disconf-client-for-java
一.disconf客户端部署 disconf目前仅支持java客户端,下文针对java客户端安装作为整理,记录下安装部署的步骤 1.环境依赖 首先需要安装java环境及maven环境,不再过多介绍 2 ...
- 【转】LoadRunner常见问题整理
原文出自:http://blog.csdn.net/loadrunn/article/details/7886918 1.LR 脚本为空的解决方法: 1.去掉ie设置中的第三方支持取消掉 2.在系统属 ...