题目大意

给定一列数,从中选择两个不相交的连续子段,求这两个连续子段和的最大值。

题目分析

典型的M子段和的问题,使用动态规划的方法来解决。

f[i][j] 表示将A[1...i] 划分为j个不相交连续子串,且A[j]属于第i个子串,所能达到的最大子串和 
g[i][j] 表示将A[1...j]划分为i个不相交连续子串,且A[j]不一定属于第i个子串,所能达到的最大子串和 
f[i][j] = max{f[i-1][j] + A[i], g[i-1][j-1] + A[i]} 
g[i][j] = max{g[i-1][j], f[i][j]}; 
进行空间优化之后: 
f[j] = max{f[j], g[j-1]} + A[i] 
g[j - 1] = max(g[j - 1], f[j - 1]); 
注意f和g的循环层次不同.这是因为:在外部进行到第i层循环的时候,f[i][j] = max{f[i-1][j] + A[i], g[i-1][j-1] + A[i]} 中max{}中的 f[j]和g[j-1]用的是第i-1层循环的时候的 f[j]和 g[j-1]; 若写成f[j] = max(f[j] + A[i], g[j - 1] + A[i]);g[j] = max(g[j], f[j]); 
则本次的g[j]变成了第i次循环的g[j],而下次循环的 f[j] = max{} 中g[j-1]变成了第i次循环的g[j],而不是第i-1次循环的g[j]因此,写成 g[j-1] = max(g[j-1], f[j-1]); 使得 每次执行 
for (j = 1; j <= m; j++){ 
f[j] = max(f[j] + A[i], g[j-1] + A[i]); 
g[j-1] = max(g[j-1], f[j-1]); 

的时候, f[j]都使用第i-1层的f[j]和g[j-1],而g[j-1]使用的是第i-1层的g[j-1]和第i层的f[j]

实现(c++)

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<string.h>
#define MAX_LEN 50005
#define INFINITE 1 << 30
#define max(a, b) a > b? a:b
long long int f[MAX_LEN];
long long int g[MAX_LEN];
int A[MAX_LEN];
/*f[i][j] 表示将A[1...i] 划分为j个不相交连续子串,且A[j]属于第i个子串,所能达到的最大子串和
g[i][j] 表示将A[1...j] 划分为i个不相交连续子串,且A[j]不一定属于第i个子串,所能达到的最大子串和
f[i][j] = max{f[i-1][j] + A[i], g[i-1][j-1] + A[i]}
g[i][j] = max{g[i-1][j], f[i][j]};
进行空间优化之后:
f[j] = max{f[j], g[j-1]} + A[i]
g[j - 1] = max(g[j - 1], f[j - 1]);
注意f和g的循环层次不同
这是因为:在外部进行到第i层循环的时候,f[i][j] = max{f[i-1][j] + A[i], g[i-1][j-1] + A[i]} 中max{}中的 f[j]和g[j-1]用的是
第i-1层循环的时候的 f[j]和 g[j-1];
若写成
f[j] = max(f[j] + A[i], g[j - 1] + A[i]);
g[j] = max(g[j], f[j]);
则本次的g[j]变成了第i次循环的g[j],而下次循环的 f[j] = max{} 中 g[j-1]变成了第i次循环的g[j],而不是第i-1次循环的g[j]
因此,写成 g[j-1] = max(g[j-1], f[j-1]); 使得 每次执行
for (j = 1; j <= m; j++){
f[j] = max(f[j] + A[i], g[j-1] + A[i]);
g[j-1] = max(g[j-1], f[j-1]);
}
的时候, f[j]都使用第i-1层的f[j]和g[j-1],而g[j-1]使用的是第i-1层的g[j-1]和第i层的f[j]
*/
long long int MaxSum(int m, int n){
int i, j;
for (i = 1; i <= n; i++){
for (j = 1; j <= m; j++){
f[j] = max(f[j] + A[i], g[j-1] + A[i]);
g[j-1] = max(g[j-1], f[j-1]);
}
g[j - 1] = max(g[j - 1], f[j - 1]);
}
return g[m];
} int main(){
int cas;
scanf("%d", &cas);
while (cas--){
int n;
scanf("%d", &n); f[0] = g[0] = 0;
for (int i = 1; i <= n; i++){
f[i] = g[i] = -INFINITE;
scanf("%d", A + i);
}
long long int max_sum = MaxSum(2, n);
printf("%lld\n", max_sum);
}
return 0;
}

poj_2479 动态规划的更多相关文章

  1. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  2. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  3. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  4. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  5. C#动态规划查找两个字符串最大子串

     //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {            ...

  6. C#递归、动态规划计算斐波那契数列

    //递归         public static long recurFib(int num)         {             if (num < 2)              ...

  7. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  8. 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划

    [BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...

  9. POJ 1163 The Triangle(简单动态规划)

    http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

随机推荐

  1. 使用vs调试.net源代码

    使用.NET Framework库参考源进行调试 您可能会想知道使用.NET Framework参考源的调试方式.在下面的示例中,您将看到一个我调用公用Console.WriteLine方法的工具.从 ...

  2. .Net Excel 导出图表Demo(柱状图,多标签页) .net工具类 分享一个简单的随机分红包的实现方式

    .Net Excel 导出图表Demo(柱状图,多标签页) 1 使用插件名称Epplus,多个Sheet页数据应用,Demo为柱状图(Epplus支持多种图表) 2 Epplus 的安装和引用 新建一 ...

  3. ASP.NET Web Forms 的 DI 應用範例

    跟 ASP.NET MVC 与 Web API 比起来,在 Web Forms 应用程式中使用 Dependency Injection 要来的麻烦些.这里用一个范例来说明如何注入相依物件至 Web ...

  4. 如何在C++中调用C程序

    注意这里的C调用C++或者C++调用C意思是.c文件中调用.cpp文件中代码,或者相反. C++和C是两种完全不同的编译链接处理方式,如果直接在C++里面调用C函数,会找不到函数体,报链接错误. 要解 ...

  5. zeroclipboard解决跨域问题

    ZeroClipboard.setDefaults({ moviePath: "//d2glos6gx2bw40.cloudfront.net/C8QpR9/images/flash/Zer ...

  6. fft分析前后频谱数据

    正弦信号输入 input 输入的原始信号 short [128] fir 滤波后的输出信号 SHORT [128] fft 傅里叶变换后的freq数据  float [128] rmroise 去除底 ...

  7. atitit.软件开发概念--过滤和投影 数据操作

    atitit.软件开发概念--过滤和投影 数据操作 投影的本质及扩展 物体在太阳光的照射下形成的影子(简称日影)就是平行投影.日影的方向可以反映时间 投影还比喻此物通过彼物表现出来的迹象. 作者::老 ...

  8. CGROUP相关知识

    安装 CentOS 6 yum install libcgroup CentOS 7 yum install libcgroup-tools 使用 默认情况下有几个控制器可以进行限制,分别是 cpus ...

  9. Sphider + SCWS 打造完美PHP中文搜索引擎

    今日需要为几个网站做个全文搜索引擎,找了几个PHP开源项目,先试了一下Sphinx ,可惜是基于数据库的,相当于数据库搜索的扩展.Sphider还不错,不过中文的分词不行,基本只能靠空格和符号进行分词 ...

  10. IOS7 隐藏状态栏 (电池栏)

    电池状态栏. //方法一(代码设置): 现在ios7已经更改为透明,并且不占用屏幕高度.其中隐藏及显示的方法如下: 在uiviewcontroller的子类下,调用:     if ([self re ...