Digital image processing(数字图像处理)
In computer science, digital image processing is the use of computer algorithms to perform image processing on digital images.[1] As a subcategory or field of digital signal processing, digital image processing has many advantages over analog image processing. It allows a much wider range of algorithms to be applied to the input data and can avoid problems such as the build-up of noise and signal distortion during processing. Since images are defined over two dimensions (perhaps more) digital image processing may be modeled in the form of multidimensional systems.
History
Many of the techniques of digital image processing, or digital picture processing as it often was called, were developed in the 1960s at the Jet Propulsion Laboratory, Massachusetts Institute of Technology, Bell Laboratories, University of Maryland, and a few other research facilities, with application to satellite imagery, wire-photo standards conversion, medical imaging, videophone, character recognition, and photograph enhancement.[2] The cost of processing was fairly high, however, with the computing equipment of that era. That changed in the 1970s, when digital image processing proliferated as cheaper computers and dedicated hardware became available. Images then could be processed in real time, for some dedicated problems such as television standards conversion. As general-purpose computers became faster, they started to take over the role of dedicated hardware for all but the most specialized and computer-intensive operations. With the fast computers and signal processors available in the 2000s, digital image processing has become the most common form of image processing and generally, is used because it is not only the most versatile method, but also the cheapest.
Digital image processing technology for medical applications was inducted into the Space Foundation Space Technology Hall of Fame in 1994.[3]
Tasks
Digital image processing allows the use of much more complex algorithms, and hence, can offer both more sophisticated performance at simple tasks, and the implementation of methods which would be impossible by analog means.
In particular, digital image processing is the only practical technology for:
Some techniques which are used in digital image processing include:
- Anisotropic diffusion
- Hidden Markov models
- Image editing
- Image restoration
- Independent component analysis
- Linear filtering
- Neural networks
- Partial differential equations
- Pixelation
- Principal components analysis
- Self-organizing maps
- Wavelets
Digital image transformations
- Filtering
- Image padding in Fourier domain filtering
- Filtering Code Examples
- Affine transformations
Applications
- Digital camera images
- Film
See also
References
- Pragnan Chakravorty, "What Is a Signal? [Lecture Notes]," IEEE Signal Processing Magazine, vol. 35, no. 5, pp. 175-177, Sept. 2018. https://doi.org/10.1109/MSP.2018.2832195
- Jump up^ Azriel Rosenfeld, Picture Processing by Computer, New York: Academic Press, 1969
- Jump up^ "Space Technology Hall of Fame:Inducted Technologies/1994". Space Foundation. 1994. Archived from the original on 4 July 2011. Retrieved 7 January 2010.
- Jump up^ Gonzalez, Rafael (2008). Digital Image Processing, 3rd. Pearson Hall. ISBN 9780131687288.
- Jump up^ Gonzalez, Rafael (2008). Digital Image Processing, 3rd. Pearson Hall. ISBN 9780131687288.
- Jump up^ A Brief, Early History of Computer Graphics in Film Archived 17 July 2012 at the Wayback Machine., Larry Yaeger, 16 August 2002 (last update), retrieved 24 March 2010
Theory:Detection theory Discrete signal Estimation theory Nyquist–Shannon sampling theorem
Sub-fields:Audio signal processing Digital image processingSpeech processing Statistical signal processing
Techniques:Advanced Z-transform Bilinear transform Constant-Q transform Discrete Fourier transform (DFT) Discrete-time Fourier transform (DTFT) Impulse invariance Integral transform Laplace transform Matched Z-transform method Post's inversion formula Starred transform Z-transform Zak transform
Sampling:Aliasing Anti-aliasing filter Downsampling Nyquist rate / frequency Oversampling Quantization Sampling rate Undersampling Upsampling
Digital image processing(数字图像处理)的更多相关文章
- Digital Imaging Processing 数字图像处理
8-Bit and 16-Bit Images 关于量化压缩与量化补偿 RGB Bayer Color分析 彩色CCD/CMOS的格式和计算机中的读取格式
- 数字图像处理实验(16):PROJECT 06-03,Color Image Enhancement by Histogram Processing 标签: 图像处理MATLAB 2017
实验要求: Objective: To know how to implement image enhancement for color images by histogram processing ...
- 数字图像处理技术在TWaver可视化中的应用
数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程.常用的图像处理方法有图像增强.复原.编码.压缩等,数 ...
- Digital Image Processing 学习笔记3
第三章 灰度变换与空间滤波 3.1 背景知识 3.1.1 灰度变换和空间滤波基础 本章节所讨论的图像处理技术都是在空间域进行的.可以表示为下式: $$g(x, y) = T[f(x,y)]$$ 其中$ ...
- FPGA与数字图像处理技术
数字图像处理方法的重要性源于两个主要应用领域: 改善图像信息以便解释. 为存储.传输和表示而对图像数据进行处理,以便于机器自动理解. 图像处理(image processing): 用计算机对图像进行 ...
- 《数字图像处理原理与实践(MATLAB版)》一书之代码Part1
本文系<数字图像处理原理与实践(MATLAB版)>一书之代码系列的Part1(P1~42).代码运行结果请參见原书配图. P20 I = imread('lena.jpg');BW1 = ...
- 数字图像处理实验(总计23个)汇总 标签: 图像处理MATLAB 2017-05-31 10:30 175人阅读 评论(0)
以下这些实验中的代码全部是我自己编写调试通过的,到此,最后进行一下汇总. 数字图像处理实验(1):PROJECT 02-01, Image Printing Program Based on Half ...
- 数字图像处理学习笔记之一 DIP绪论与MATLAB基础
写在前面的话 数字图像处理系列的学习笔记是作者结合上海大学计算机学院<数字图像处理>课程的学习所做的笔记,使用参考书籍为<冈萨雷斯数字图像处理(第二版)(MATLAB版)>,同 ...
- 信号处理的好书Digital Signal Processing - A Practical Guide for Engineers and Scientists
诚心给大家推荐一本讲信号处理的好书<Digital Signal Processing - A Practical Guide for Engineers and Scientists>[ ...
随机推荐
- Window app遇到的问题
Windows下两个应用之间进行UDP通讯,必须要先互相发送过数据,才能收到其他的数据.解决方法: <Capabilities> <Capability Name="int ...
- Nginx压力测试工具之WebBench
Nginx压力测试工具之WebBench 在Apache中有自带的ab命令可以测试服务的压力,而nginx没有自带的命令,必须要采用第三方软件来测试,今天就简单介绍一下webbench对nginx ...
- 第一章 : Android Studio 介绍 [Learn Android Studio 汉化教程]
摘自:http://ask.android-studio.org/?/question/789,为便于学习重新整理.. 本章将引导您完成安装和设置开发环境,然后你就可以跟随本书的例子和课程学习. 首先 ...
- 使用被动混合内容的方式来跨越浏览器会阻断HTTPS上的非安全请求(HTTP)请求的安全策略抓包详解
/*通过传入loginId在token中附加loginId参数,方便后续读取指定缓存中的指定用户信息*/ GET /multitalk/takePhone.php?loginId=4edc153568 ...
- 12_java之构造方法|this|super
01构造方法引入 * A:构造方法的引入 在开发中经常需要在创建对象的同时明确对象的属性值,比如员工入职公司就要明确他的姓名.年龄等属性信息. 那么,创建对象就要明确属性值,那怎么解决呢?也就是在创建 ...
- linux 进程通信 :流套接字
消息队列是可以实现没有共同关系的进程之间的通信.Socket则可以实现不同计算机的不同进程之间的通信. //地址的结构体 struct sockaddr_in{ short int sin_famil ...
- Python 迭代器和生成器(转)
Python 迭代器和生成器 在Python中,很多对象都是可以通过for语句来直接遍历的,例如list.string.dict等等,这些对象都可以被称为可迭代对象.至于说哪些对象是可以被迭代访问的, ...
- awk中printf的使用说明
printf()函数是格式化输出函数, 一般用于向标准输出设备按规定格式输出信息.在编写程序时经常会用到此函数.printf()函数的调用格式为: printf("", ); 其中 ...
- Linux实战教学笔记20:初级阶段结束,中级阶段起航
第二十节 第一阶段结束第二阶段起航 标签(空格分隔): Linux实战教学笔记-陈思齐 一,承上 Linux实战教学笔记的基础核心能力阶段也就是第一阶段到此也就告一段落了.如果同学们能基本全都掌握,再 ...
- Mono在Full AOT模式下的限制
[Mono在Full AOT模式下的限制] 调试时遇到一个Mono运行时异常: ExecutionEngineException: Attempting to JIT compile method ' ...