[BZOJ4340][BJOI2015]隐身术(后缀数组)
考虑到K很小,于是可以暴搜每次用的是哪种操作,跳过AB相等的字符可以用SA求LCP加速。
主要流程就是,枚举B的每个后缀,对每个后缀统计合法前缀个数。DFS搜索每次决策,用SA跳过相同字符,当A或B匹配到结尾时统计答案。
每次某个串匹配到结尾时,B中的某个区间的前缀都会合法,注意到这些合法的前缀长度与A长度相差一定不超过K,于是用一个2*K+1的差分数组记录答案即可。复杂度$O(n\log n+n3^K)$
#include<cstring>
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=;
int K,m,na,nb,n,d,ans,lg[N],h[N],c[N],x[N],y[N],sa[N],rk[N],st[N][];
char s[N],A[N],B[N]; bool Cmp(int a,int b,int l){ return y[a]==y[b] && y[a+l]==y[b+l]; } void getSA(int m){
memset(y,,sizeof(y));
rep(i,,m) c[i]=;
rep(i,,n) c[x[i]=s[i]]++;
rep(i,,m) c[i]+=c[i-];
for (int i=n; i; i--) sa[c[x[i]]--]=i;
for (int k=,p=; p<n; k<<=,m=p){
p=; rep(i,n-k+,n) y[++p]=i;
rep(i,,n) if (sa[i]>k) y[++p]=sa[i]-k;
rep(i,,m) c[i]=;
rep(i,,n) c[x[y[i]]]++;
rep(i,,m) c[i]+=c[i-];
for (int i=n; i; i--) sa[c[x[y[i]]]--]=y[i];
rep(i,,n) y[i]=x[i]; p=; x[sa[]]=;
rep(i,,n) x[sa[i]]=Cmp(sa[i],sa[i-],k)?p:++p;
}
} void getH(){
rep(i,,n) rk[sa[i]]=i; int k=;
rep(i,,n){
for (int j=sa[rk[i]-]; j+k<=n && i+k<=n && s[i+k]==s[j+k]; k++);
h[rk[i]]=k; if (k) k--;
}
} void init(){
lg[]=; rep(i,,n) lg[i]=lg[i>>]+;
rep(i,,n) st[i][]=h[i];
rep(i,,) rep(j,,n-(<<i)+) st[j][i]=min(st[j][i-],st[j+(<<(i-))][i-]);
} int lcp(int l,int r){
int x=rk[l],y=rk[r+na+];
if (x>y) swap(x,y);
x++; int t=lg[y-x+];
return min(st[x][t],st[y-(<<t)+][t]);
} void col(int l,int r){ l=max(l,d); r=min(r,nb); c[K-(na-(l-d+))+]++; c[K-(na-(r-d+))+]--; } void dfs(int x,int y,int z){
int t=lcp(x,y); x+=t; y+=t;
if (x>na || y>nb){
int c=K-z-(na-x+);
if (c>=) col(y--c,y-+c);
return;
}
if (z==K) return;
dfs(x+,y,z+); dfs(x,y+,z+); dfs(x+,y+,z+);
} int main(){
freopen("bzoj4340.in","r",stdin);
freopen("bzoj4340.out","w",stdout);
scanf("%d%s%s",&K,A+,B+); m=*K+;
na=strlen(A+); nb=strlen(B+);
rep(i,,na) s[++n]=A[i]; s[++n]='#';
rep(i,,nb) s[++n]=B[i];
getSA(); getH(); init();
for (d=; d<=nb; d++){
rep(j,,m) c[j]=;
dfs(,d,);
rep(j,,m){
c[j]+=c[j-];
if (c[j]) ans++;
}
}
printf("%d\n",ans);
return ;
}
[BZOJ4340][BJOI2015]隐身术(后缀数组)的更多相关文章
- BZOJ4340:[BJOI2015]隐身术(后缀数组,ST表,DFS)
Description 给定两个串A,B.请问B中有多少个非空子串和A的编辑距离不超过K? 所谓“子串”,指的是B中连续的一段.不同位置的内容相同的子串算作多个. 两个串之间的“编辑距离”指的是把一个 ...
- BZOJ.4340.[BJOI2015]隐身术(后缀数组 搜索)
BZOJ \(Description\) 给定两个串\(S,T\)以及一个数\(k\),求\(T\)中有多少个子串,满足和\(S\)的编辑距离不超过\(k\). \(|S|+|T|\leq10^5,\ ...
- BZOJ4340 : BJOI2015 隐身术
枚举$B$串的每个后缀,统计出该后缀所有满足条件的前缀. 考虑暴力搜索,设状态$(x,y,z)$表示当前需要考虑$A$从$x$开始的后缀,$B$从$y$开始的后缀,之前部分编辑距离为$z$. 那么首先 ...
- 后缀数组的倍增算法(Prefix Doubling)
后缀数组的倍增算法(Prefix Doubling) 文本内容除特殊注明外,均在知识共享署名-非商业性使用-相同方式共享 3.0协议下提供,附加条款亦可能应用. 最近在自学习BWT算法(Burrows ...
- BZOJ 4199: [Noi2015]品酒大会 [后缀数组 带权并查集]
4199: [Noi2015]品酒大会 UOJ:http://uoj.ac/problem/131 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品 ...
- BZOJ 1692: [Usaco2007 Dec]队列变换 [后缀数组 贪心]
1692: [Usaco2007 Dec]队列变换 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1383 Solved: 582[Submit][St ...
- POJ3693 Maximum repetition substring [后缀数组 ST表]
Maximum repetition substring Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9458 Acc ...
- POJ1743 Musical Theme [后缀数组]
Musical Theme Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 27539 Accepted: 9290 De ...
- 后缀数组(suffix array)详解
写在前面 在字符串处理当中,后缀树和后缀数组都是非常有力的工具. 其中后缀树大家了解得比较多,关于后缀数组则很少见于国内的资料. 其实后缀数组是后缀树的一个非常精巧的替代品,它比后缀树容易编程实现, ...
随机推荐
- 谨慎重载clone方法
本文涉及到的概念 1.浅拷贝和深拷贝 2..clone方法的作用和使用方式 3.拷贝构造器和拷贝工厂 1.浅拷贝和深拷贝 浅拷贝 一个类实现Cloneable接口,然后,该类的实例调用clone方 ...
- JavaScript数据类型和转换
JavaScript数据类型 1.Boolean(布尔) 布尔:(值类型)var b1=true;//布尔类型 2.Number(数字) 数值:(值类型)var n1=3.1415926;//数值类型 ...
- 源自人脑的神奇算法 -- 读《How to make your own neural network》有感
最近读到了一本很好的关于机器学习-深度学习的书值得推荐下并特意做了这个学习总结. 为什么推荐 在我认为好书(计算机类)的评判有几个标准: 试图以通俗的语言阐述,并在引入任何新概念的时候都讲述来龙去脉, ...
- C# 动态调取 soap 接口
调用示例 string url = "http://localhost:8080/server/PatientService.asmx"; Hashtable ht = new H ...
- 如何在Linux启动的时候执行一个命令
在Linux启动起来时,执行一个命令的设置方法== 例如:需要执行的命令是cvslockd ============第一种方式:根据运行级别配置======================== 第一步 ...
- ireport报表制作, 当一个字段显示的数据太多时(数据过长),则需要自动换行
1.当一个字段显示的数据太长,一个表格放不下,则需要自动换行,选中要更改的表格(要显示动态内容的字段),设置属性Stretch with overflow 为钩选状态. 未勾选之前: 勾选之后: 2. ...
- maven实战系列
Maven实战(一)安装和配置 Maven实战(二)构建简单Maven项目 Maven实战(三)Eclipse构建Maven项目 Maven实战(四)生命周期 Maven实战(五)坐标详解 Maven ...
- Codefroces 735D Taxes(哥德巴赫猜想)
题目链接:http://codeforces.com/problemset/problem/735/D 题目大意:给一个n,n可以被分解成n1+n2+n3+....nk(1=<k<=n). ...
- POJ 1386 Play on Words(单词建图+欧拉通(回)路路判断)
题目链接:http://poj.org/problem?id=1386 题目大意:给你若干个字符串,一个单词的尾部和一个单词的头部相同那么这两个单词就可以相连,判断给出的n个单词是否能够一个接着一个全 ...
- sql server 存储过程解密
Create PROCEDURE [dbo].[sp_windbi$decrypt] () AS /**//* 王成辉翻译整理,转贴请注明出自微软BI开拓者www.windbi.com 调用形式为: ...