Tree

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)
Total Submission(s): 1643    Accepted Submission(s): 461

Problem Description
  Zero and One are good friends who always have fun with each other. This time, they decide to do something on a tree which is a kind of graph that there is only one path from node to node. First, Zero will give One an tree and every node in this tree has a value. Then, Zero will ask One a series of queries. Each query contains three parameters: x, y, z which mean that he want to know the maximum value produced by z xor each value on the path from node x to node y (include node x, node y). Unfortunately, One has no idea in this question. So he need you to solve it.
 
Input
  There are several test cases and the cases end with EOF. For each case:

The first line contains two integers n(1<=n<=10^5) and m(1<=m<=10^5), which are the amount of tree’s nodes and queries, respectively.

The second line contains n integers a[1..n] and a[i](0<=a[i]<2^{16}) is the value on the ith node.

The next n–1 lines contains two integers u v, which means there is an connection between u and v.

The next m lines contains three integers x y z, which are the parameters of Zero’s query.

 
Output
  For each query, output the answer.

 
Sample Input
3 2
1 2 2
1 2
2 3
 
1 3 1
2 3 2
 
Sample Output
3
0
 

题目链接:HDU 4757

一道跟COT很像的题,但是用的是可持久化的Trie,做法跟COT基本相同,但是过程中由于N少设了10倍,无限TLE……各种纠结问题出在Tarjan?并查集?插入查询函数?因此过程中还找了题解但发现并没有什么区别,但有另外一种非递归形式的插入查询写法,值得借鉴。另外处理节点LCA的问题上公式还是那条$cnt_{U,V}=cnt_{U}+cnt_{V}-cnt_{LCA}-cnt_{father[LCA]}$

单纯地减掉两倍可能会出错,不知道网上的例程是什么情况。通过最近几道题了解了可持久化Trie的空间复杂度似乎跟Trie是一样的,都是Total*maxlen(如果撇开相对来说只有一丢丢的root数组不说的话)

递归更新查询的代码:

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <sstream>
#include <cstring>
#include <bitset>
#include <string>
#include <deque>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
typedef pair<int,int> pii;
typedef long long LL;
const double PI=acos(-1.0);
const int N=1e5+7;
struct Trie
{
int nxt[2];
int cnt;
};
struct edge
{
int to,nxt;
};
struct Query
{
int to,nxt,id,lca;
};
struct ask
{
int u,v,lca,val;
};
ask q[N];
Trie L[N*18];int cnt;
Query Q[N<<1];int qtot,qhead[N];
edge E[N<<1];int tot,head[N];
int ances[N],pre[N],Father[N];
bitset<N>vis;
int arr[N],root[N]; void init()
{
CLR(L,0);cnt=0;
CLR(head,-1);tot=0;
CLR(qhead,-1);qtot=0;
CLR(ances,0);
for (int i=0; i<N; ++i)
pre[i]=i;
CLR(Father,0);
vis.reset();
CLR(root,0);
}
inline void add(const int &s,const int &t)
{
E[tot].to=t;
E[tot].nxt=head[s];
head[s]=tot++;
}
inline void addQ(const int &s,const int &t,const int &id)
{
Q[qtot].to=t;
Q[qtot].id=id;
Q[qtot].lca=1;
Q[qtot].nxt=qhead[s];
qhead[s]=qtot++;
} void update(int &cur,const int &ori,const int &step,const int &n)
{
cur=++cnt;
L[cur]=L[ori];
++L[cur].cnt;
if(step<0)
return;
int t=(n>>step)&1;
update(L[cur].nxt[t],L[ori].nxt[t],step-1,n);
}
int Find(const int &n)
{
return n==pre[n]?n:pre[n]=Find(pre[n]);
}
void Tarjan(const int &u,const int &Fa)
{
vis[u]=1;
ances[u]=u;
Father[u]=Fa;
update(root[u],root[Fa],16,arr[u]);
for (int i=head[u]; ~i; i=E[i].nxt)
{
int v=E[i].to;
if(!vis[v])
{
Tarjan(v,u);
pre[v]=u;
ances[Find(u)]=u;
}
}
for (int i=qhead[u]; ~i; i=Q[i].nxt)
{
int v=Q[i].to;
if(vis[v])
q[Q[i].id].lca=ances[Find(v)];
}
}
int query(const int &U,const int &V,const int &LCA,const int &F_LCA,const int &step,const int &n)
{
if(step<0)
return 0;
int t=(n>>step)&1;
int c=L[L[U].nxt[t^1]].cnt+L[L[V].nxt[t^1]].cnt-L[L[LCA].nxt[t^1]].cnt-L[L[F_LCA].nxt[t^1]].cnt;
if(c>0)
return (1<<step)+query(L[U].nxt[t^1],L[V].nxt[t^1],L[LCA].nxt[t^1],L[F_LCA].nxt[t^1],step-1,n);
else
return query(L[U].nxt[t],L[V].nxt[t],L[LCA].nxt[t],L[F_LCA].nxt[t],step-1,n);
}
int main(void)
{
int n,m,a,b,i;
while (~scanf("%d%d",&n,&m))
{
init();
for (i=1; i<=n; ++i)
scanf("%d",&arr[i]);
for (i=0; i<n-1; ++i)
{
scanf("%d%d",&a,&b);
add(a, b);
add(b, a);
}
for (i=0; i<m; ++i)
{
scanf("%d%d%d",&q[i].u,&q[i].v,&q[i].val);
addQ(q[i].u, q[i].v, i);
addQ(q[i].v, q[i].u, i);
}
Tarjan(1,0);
for (i=0; i<m; ++i)
printf("%d\n",query(root[q[i].u],root[q[i].v],root[q[i].lca],root[Father[q[i].lca]],16,q[i].val));
}
return 0;
}

网上例程的非递归写法:

int update(int ori,int n)
{
bitset<17> s=n;
int cur=++cnt;
int ret=cur;
L[cur]=L[ori];
for (int i=16; i>=0; --i)
{
int v=s[i];
L[++cnt]=L[L[cur].nxt[v]];
++L[cnt].cnt;
L[cur].nxt[v]=cnt;
cur=cnt;
}
return ret;
}
void Tarjan(const int &u,const int &Fa)
{
/*vis[u]=1;
ances[u]=u;
Father[u]=Fa;*/
root[u]=update(root[Fa],arr[u]);
/*for (int i=head[u]; ~i; i=E[i].nxt)
{
int v=E[i].to;
if(!vis[v])
{
Tarjan(v,u);
pre[v]=u;
ances[Find(u)]=u;
}
}
for (int i=qhead[u]; ~i; i=Q[i].nxt)
{
int v=Q[i].to;
if(vis[v])
q[Q[i].id].lca=ances[Find(v)];
}*/
}
int query(int u,int v,int lca,int flca,int n)
{
int r=0;
bitset<17> s=n;
for (int i=16; i>=0; --i)
{
int indx=s[i];
int c=L[L[u].nxt[indx^1]].cnt+L[L[v].nxt[indx^1]].cnt-L[L[lca].nxt[indx^1]].cnt-L[L[flca].nxt[indx^1]].cnt;
if(c>0)
{
r+=1<<i;
u=L[u].nxt[indx^1];
v=L[v].nxt[indx^1];
lca=L[lca].nxt[indx^1];
flca=L[flca].nxt[indx^1];
}
else
{
u=L[u].nxt[indx];
v=L[v].nxt[indx];
lca=L[lca].nxt[indx];
flca=L[flca].nxt[indx];
}
}
return r;
}

HDU 4757 Tree(可持久化Trie+Tarjan离线LCA)的更多相关文章

  1. HDU.4757.Tree(可持久化Trie)

    题目链接 \(Description\) 给定一棵树,点有点权.\(Q\)次询问\(x,y,z\),求\(x\)到\(y\)的简单路径中,与\(z\)异或能得到的最大的数是多少. \(Solution ...

  2. HDU 4757 Tree 可持久化字典树 trie

    http://acm.hdu.edu.cn/showproblem.php?pid=4757 给出一棵树,每个节点有权值,每次查询节点 (u,v) 以及 val,问 u 到 v 路径上的某个节点与 v ...

  3. HDU 4757 Tree 可持久化字典树

    Tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4757 Des ...

  4. HDU 4757 Tree(可持久化trie)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4757 题意:给出一棵树,节点有权值.每次询问x到y的路径上与z抑或的最大值. 思路:可持久化trie. ...

  5. HDU 4757 Tree

    传送门 Tree Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others) Prob ...

  6. SPOJ 10628 Count on a tree(Tarjan离线LCA+主席树求树上第K小)

    COT - Count on a tree #tree You are given a tree with N nodes.The tree nodes are numbered from 1 to  ...

  7. HDU 4757 Tree(可持久化字典树)(2013 ACM/ICPC Asia Regional Nanjing Online)

    Problem Description   Zero and One are good friends who always have fun with each other. This time, ...

  8. HDU4757 Tree(可持久化Trie)

    写过可持久化线段树,但是从来没写过可持久化的Trie,今天补一补. 题目就是典型的给你一个数x,和一个数集,问x和里面的某个数xor起来的最大值是多少. 最原始的是数集是固定的,只需要对数集按照高到低 ...

  9. HDU 4757 Tree(可持续化字典树,lca)

    题意:询问树上结点x到结点y路上上的权值异或z的最大值. 任意结点权值 ≤ 2^16,可以想到用字典树. 但是因为是询问某条路径上的字典树,将字典树可持续化,字典树上的结点保存在这条路径上的二进制数. ...

随机推荐

  1. jQuery源码笔记(二):定义了一些变量和函数 jQuery = function(){}

    笔记(二)也分为三部分: 一. 介绍: 注释说明:v2.0.3版本.Sizzle选择器.MIT软件许可注释中的#的信息索引.查询地址(英文版)匿名函数自执行:window参数及undefined参数意 ...

  2. c++ 类静态成员、非静态成员初始化

    1.静态成员初始化(不能在构造函数或初始化列表中初始化) 1.1 所有静态成员都可以在类定义之外初始化(通用),如下所示 class test { public: static int a; }; ; ...

  3. mingw32 捕获异常的4种方法

    ------------------------------------------------------------------------------- 1. 利用 windows 的API S ...

  4. js实现四舍六入 奇进偶舍

    function PointFloat(src, pos) { return Math.round(src * Math.pow(10, pos)) / Math.pow(10, pos); } // ...

  5. C#与Java多态方面的语法差异

    C++.C#.Java,无奈三种语言让我多次混淆,多次搞清楚,不写个Demo我想还是会忘记的. 就好像是一个满水的杯子,倒掉一点,才能装下更多. 有时候博客就是一个倒水的地方,可以让我们清空自己,然后 ...

  6. jQuery hover事件

    hover(over,out)一个模仿悬停事件(鼠标移动到一个对象上面及移出这个对象)的方法.这是一个自定义的方法,它为频繁使用的任务提供了一种"保持在其中"的状态. 当鼠标移动到 ...

  7. Redhat/Ubuntu/Windows下安装Docker

    Redhat/Ubuntu/Windows下安装Docker 什么是Docker Docker是Docker.inc公司开源的一个基于LXC技术之上构建的Container容器引擎,基于Go语言并遵从 ...

  8. sqlserver2000 数据库 'tempdb' 的日志已满

    方法一解决过程: 查看了下数据库的属性,是自动增长,不指定文件大小上限.在网上Google了很久,试了些方法都不行:数据库所在磁盘还有很大的可用空间,试着下重药了.直接把tempdb的数据文件和日志文 ...

  9. Ubuntu16.04安装nginx

    //ubuntu //安装nginxcurl -LJO http://nginx.org/download/nginx-1.10.1.tar.gz tar zxvf nginx-1.10.1.tar. ...

  10. Sql常用语法以及名词解释

    Sql常用语法以及名词解释 SQL分类: DDL—数据定义语言(CREATE,ALTER,DROP,DECLARE) DML—数据操纵语言(SELECT,DELETE,UPDATE,INSERT) D ...