Tree

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)
Total Submission(s): 1643    Accepted Submission(s): 461

Problem Description
  Zero and One are good friends who always have fun with each other. This time, they decide to do something on a tree which is a kind of graph that there is only one path from node to node. First, Zero will give One an tree and every node in this tree has a value. Then, Zero will ask One a series of queries. Each query contains three parameters: x, y, z which mean that he want to know the maximum value produced by z xor each value on the path from node x to node y (include node x, node y). Unfortunately, One has no idea in this question. So he need you to solve it.
 
Input
  There are several test cases and the cases end with EOF. For each case:

The first line contains two integers n(1<=n<=10^5) and m(1<=m<=10^5), which are the amount of tree’s nodes and queries, respectively.

The second line contains n integers a[1..n] and a[i](0<=a[i]<2^{16}) is the value on the ith node.

The next n–1 lines contains two integers u v, which means there is an connection between u and v.

The next m lines contains three integers x y z, which are the parameters of Zero’s query.

 
Output
  For each query, output the answer.

 
Sample Input
3 2
1 2 2
1 2
2 3
 
1 3 1
2 3 2
 
Sample Output
3
0
 

题目链接:HDU 4757

一道跟COT很像的题,但是用的是可持久化的Trie,做法跟COT基本相同,但是过程中由于N少设了10倍,无限TLE……各种纠结问题出在Tarjan?并查集?插入查询函数?因此过程中还找了题解但发现并没有什么区别,但有另外一种非递归形式的插入查询写法,值得借鉴。另外处理节点LCA的问题上公式还是那条$cnt_{U,V}=cnt_{U}+cnt_{V}-cnt_{LCA}-cnt_{father[LCA]}$

单纯地减掉两倍可能会出错,不知道网上的例程是什么情况。通过最近几道题了解了可持久化Trie的空间复杂度似乎跟Trie是一样的,都是Total*maxlen(如果撇开相对来说只有一丢丢的root数组不说的话)

递归更新查询的代码:

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <sstream>
#include <cstring>
#include <bitset>
#include <string>
#include <deque>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
typedef pair<int,int> pii;
typedef long long LL;
const double PI=acos(-1.0);
const int N=1e5+7;
struct Trie
{
int nxt[2];
int cnt;
};
struct edge
{
int to,nxt;
};
struct Query
{
int to,nxt,id,lca;
};
struct ask
{
int u,v,lca,val;
};
ask q[N];
Trie L[N*18];int cnt;
Query Q[N<<1];int qtot,qhead[N];
edge E[N<<1];int tot,head[N];
int ances[N],pre[N],Father[N];
bitset<N>vis;
int arr[N],root[N]; void init()
{
CLR(L,0);cnt=0;
CLR(head,-1);tot=0;
CLR(qhead,-1);qtot=0;
CLR(ances,0);
for (int i=0; i<N; ++i)
pre[i]=i;
CLR(Father,0);
vis.reset();
CLR(root,0);
}
inline void add(const int &s,const int &t)
{
E[tot].to=t;
E[tot].nxt=head[s];
head[s]=tot++;
}
inline void addQ(const int &s,const int &t,const int &id)
{
Q[qtot].to=t;
Q[qtot].id=id;
Q[qtot].lca=1;
Q[qtot].nxt=qhead[s];
qhead[s]=qtot++;
} void update(int &cur,const int &ori,const int &step,const int &n)
{
cur=++cnt;
L[cur]=L[ori];
++L[cur].cnt;
if(step<0)
return;
int t=(n>>step)&1;
update(L[cur].nxt[t],L[ori].nxt[t],step-1,n);
}
int Find(const int &n)
{
return n==pre[n]?n:pre[n]=Find(pre[n]);
}
void Tarjan(const int &u,const int &Fa)
{
vis[u]=1;
ances[u]=u;
Father[u]=Fa;
update(root[u],root[Fa],16,arr[u]);
for (int i=head[u]; ~i; i=E[i].nxt)
{
int v=E[i].to;
if(!vis[v])
{
Tarjan(v,u);
pre[v]=u;
ances[Find(u)]=u;
}
}
for (int i=qhead[u]; ~i; i=Q[i].nxt)
{
int v=Q[i].to;
if(vis[v])
q[Q[i].id].lca=ances[Find(v)];
}
}
int query(const int &U,const int &V,const int &LCA,const int &F_LCA,const int &step,const int &n)
{
if(step<0)
return 0;
int t=(n>>step)&1;
int c=L[L[U].nxt[t^1]].cnt+L[L[V].nxt[t^1]].cnt-L[L[LCA].nxt[t^1]].cnt-L[L[F_LCA].nxt[t^1]].cnt;
if(c>0)
return (1<<step)+query(L[U].nxt[t^1],L[V].nxt[t^1],L[LCA].nxt[t^1],L[F_LCA].nxt[t^1],step-1,n);
else
return query(L[U].nxt[t],L[V].nxt[t],L[LCA].nxt[t],L[F_LCA].nxt[t],step-1,n);
}
int main(void)
{
int n,m,a,b,i;
while (~scanf("%d%d",&n,&m))
{
init();
for (i=1; i<=n; ++i)
scanf("%d",&arr[i]);
for (i=0; i<n-1; ++i)
{
scanf("%d%d",&a,&b);
add(a, b);
add(b, a);
}
for (i=0; i<m; ++i)
{
scanf("%d%d%d",&q[i].u,&q[i].v,&q[i].val);
addQ(q[i].u, q[i].v, i);
addQ(q[i].v, q[i].u, i);
}
Tarjan(1,0);
for (i=0; i<m; ++i)
printf("%d\n",query(root[q[i].u],root[q[i].v],root[q[i].lca],root[Father[q[i].lca]],16,q[i].val));
}
return 0;
}

网上例程的非递归写法:

int update(int ori,int n)
{
bitset<17> s=n;
int cur=++cnt;
int ret=cur;
L[cur]=L[ori];
for (int i=16; i>=0; --i)
{
int v=s[i];
L[++cnt]=L[L[cur].nxt[v]];
++L[cnt].cnt;
L[cur].nxt[v]=cnt;
cur=cnt;
}
return ret;
}
void Tarjan(const int &u,const int &Fa)
{
/*vis[u]=1;
ances[u]=u;
Father[u]=Fa;*/
root[u]=update(root[Fa],arr[u]);
/*for (int i=head[u]; ~i; i=E[i].nxt)
{
int v=E[i].to;
if(!vis[v])
{
Tarjan(v,u);
pre[v]=u;
ances[Find(u)]=u;
}
}
for (int i=qhead[u]; ~i; i=Q[i].nxt)
{
int v=Q[i].to;
if(vis[v])
q[Q[i].id].lca=ances[Find(v)];
}*/
}
int query(int u,int v,int lca,int flca,int n)
{
int r=0;
bitset<17> s=n;
for (int i=16; i>=0; --i)
{
int indx=s[i];
int c=L[L[u].nxt[indx^1]].cnt+L[L[v].nxt[indx^1]].cnt-L[L[lca].nxt[indx^1]].cnt-L[L[flca].nxt[indx^1]].cnt;
if(c>0)
{
r+=1<<i;
u=L[u].nxt[indx^1];
v=L[v].nxt[indx^1];
lca=L[lca].nxt[indx^1];
flca=L[flca].nxt[indx^1];
}
else
{
u=L[u].nxt[indx];
v=L[v].nxt[indx];
lca=L[lca].nxt[indx];
flca=L[flca].nxt[indx];
}
}
return r;
}

HDU 4757 Tree(可持久化Trie+Tarjan离线LCA)的更多相关文章

  1. HDU.4757.Tree(可持久化Trie)

    题目链接 \(Description\) 给定一棵树,点有点权.\(Q\)次询问\(x,y,z\),求\(x\)到\(y\)的简单路径中,与\(z\)异或能得到的最大的数是多少. \(Solution ...

  2. HDU 4757 Tree 可持久化字典树 trie

    http://acm.hdu.edu.cn/showproblem.php?pid=4757 给出一棵树,每个节点有权值,每次查询节点 (u,v) 以及 val,问 u 到 v 路径上的某个节点与 v ...

  3. HDU 4757 Tree 可持久化字典树

    Tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4757 Des ...

  4. HDU 4757 Tree(可持久化trie)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4757 题意:给出一棵树,节点有权值.每次询问x到y的路径上与z抑或的最大值. 思路:可持久化trie. ...

  5. HDU 4757 Tree

    传送门 Tree Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others) Prob ...

  6. SPOJ 10628 Count on a tree(Tarjan离线LCA+主席树求树上第K小)

    COT - Count on a tree #tree You are given a tree with N nodes.The tree nodes are numbered from 1 to  ...

  7. HDU 4757 Tree(可持久化字典树)(2013 ACM/ICPC Asia Regional Nanjing Online)

    Problem Description   Zero and One are good friends who always have fun with each other. This time, ...

  8. HDU4757 Tree(可持久化Trie)

    写过可持久化线段树,但是从来没写过可持久化的Trie,今天补一补. 题目就是典型的给你一个数x,和一个数集,问x和里面的某个数xor起来的最大值是多少. 最原始的是数集是固定的,只需要对数集按照高到低 ...

  9. HDU 4757 Tree(可持续化字典树,lca)

    题意:询问树上结点x到结点y路上上的权值异或z的最大值. 任意结点权值 ≤ 2^16,可以想到用字典树. 但是因为是询问某条路径上的字典树,将字典树可持续化,字典树上的结点保存在这条路径上的二进制数. ...

随机推荐

  1. Vue in 2016

    原文链接:Vue in 2016 Vue 作者尤雨溪对 Vue 在 2016 年的总结以及未来的展望 现在已经是2016的尾声了!在这过去的12个月里,Vue的持续增长速度已经超过了我的预期--这个项 ...

  2. js倒计时代码 适合于促销-倒计时代码

    <div class="tiem_price clearfix fonts" style="margin-top:15px;"> <div c ...

  3. r-cnn学习(六):RPN及AnchorTargetLayer学习

    RPN网络是faster与fast的主要区别,输入特征图,输出region proposals以及相应的分数. # ------------------------------------------ ...

  4. 深度学习入门教程UFLDL学习实验笔记三:主成分分析PCA与白化whitening

    主成分分析与白化是在做深度学习训练时最常见的两种预处理的方法,主成分分析是一种我们用的很多的降维的一种手段,通过PCA降维,我们能够有效的降低数据的维度,加快运算速度.而白化就是为了使得每个特征能有同 ...

  5. start WampServer如何关闭浏览目录

    打开Httpd.conf IncludesNOEXEC Indexes 去掉这个代码就可以了

  6. [转]Ubantu vmware tools 安装

    https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&external ...

  7. java基本算法之冒泡排序

    冒泡排序:是一种较简单的排序算法.它会遍历若干次要排序的数列,每次遍历时,它都会从前往后依次的比较相邻两个数的大小:如果前者比后者大,则交换它们的位置.这样,一次遍历之后,最大的元素就在数列的末尾! ...

  8. mysql sql优化实例

    mysql sql优化实例 优化前: pt-query-degist分析结果: # Query 3: 0.00 QPS, 0.00x concurrency, ID 0xDC6E62FA021C85B ...

  9. tc674div1b

    题意:给出n个孩子的初始位置,和每个孩子开始的朝向(左或者右),然后孩子的行走规则是,速度始终为1,两人相遇则两人立即转身背向而行. 现在有q次询问,每次问编号为i的孩子在时间t距离原点的距离.返回所 ...

  10. mount挂载问题

    安装nfs-utils即可