alexNet共有八层网络
卷积层1:输入224*224*3 卷积核11*11*3*96 步长为4 然后是ReLU、局部归一化、3*3步长为2的最大值池化
卷积层2:输入为28*28*96 卷积核5*5*96*256 然后是ReLU、局部归一化、3*3步长为2的最大值池化
卷积层3:输入14*14*256 卷积核3*3*256*384 然后是ReLU
卷积层4:输入14*14*384 卷积核3*3*384*384 然后是ReLU
卷积层5:输入14*14*384 卷积核3*3*384*256 然后是ReLU、3*3步长为2的最大值池化
全连接层1:输入6*6*256 输出4096 然后是ReLU、DropOut
全连接层2:输入4096 输出4096 然后是ReLU、DropOut
全连接层3:输入4096 输出1000

具体图像地址:
http://app.liuchengtu.com/#R46a424714855ca651e9334b1ad1ce212
●第一层:

①输入图片为224x 224 x3, 表示长宽是224个像素,RGB彩色图通道为3通道,所以还要乘以3.(学界普遍认为论文中说的224不太合适,讲道理应该是227的大小才对,这也成为一个悬案),

②然后采用了96个11 x 11 x 3 的filter。在stride为4的设置下,对输入图像进行了卷积操作。所以经过这一卷积后的操作,输出就变成了55 x 55 x96 的data map。这三个数字的由来:(227-11)/ 4 + 1 = 55,96就是滤波器的个数。

③然后经过激活函数ReLu,再进行池化操作-pooling:滤波器的大小为3 x 3,步长stride为2. 所以池化后的输出为27x 27 x 96

(55-3)/ 2 + 1 =27.     96仍为原来的深度。

④LRN,局部响应归一化。后来大家都认为这个操作没有什么太大的作用,所以后面的网络几乎都没有这个操作,我也就不提了。

●其他第2、3、4、5层的计算过程类似。

●第六层:本层的输入为6 x 6 x 256,全连接层其实就是一个矩阵运算,它完成一个空间上的映射。所以把输入看成一个列向量X,维度为9216(6 x 6 x 256),也就是你可以把输入看成一个9216 x 1的矩阵。

然后和参数矩阵W相乘,参数矩阵W你此时设置为4096 x 9216

所以最后本全连接层的输出就是 矩阵相乘Y = W·X得 4096 x 1的矩阵

●第八层:第八层的输出就为1000 x 1的矩阵,即1000维度的一个列向量,对应softmax regression的1000个标签

Alex网络的更多相关文章

  1. AlexNet 网络详解及Tensorflow实现源码

    版权声明:本文为博主原创文章,未经博主允许不得转载. 1. 图片数据处理 2. 卷积神经网络 2.1. 卷积层 2.2. 池化层 2.3. 全链层 3. AlexNet 4. 用Tensorflow搭 ...

  2. LetNet、Alex、VggNet分析及其pytorch实现

    简单分析一下主流的几种神经网络 LeNet LetNet作为卷积神经网络中的HelloWorld,它的结构及其的简单,1998年由LeCun提出 基本过程: 可以看到LeNet-5跟现有的conv-& ...

  3. 深度学习基础(二)AlexNet_ImageNet Classification with Deep Convolutional Neural Networks

    该论文是深度学习领域的经典之作,因为自从Alex Krizhevsky提出AlexNet并使用GPUs大幅提升训练的效率之后,深度学习在图像识别等领域掀起了研究使用的热潮.在论文中,作者训练了一个含有 ...

  4. 0005-20180422-自动化第六章-python基础学习笔记

    day6 内容回顾: 1. 变量 2. 条件 3. while循环 4. 数据类型 - int - bit_length - bool - True/False - str - upper - low ...

  5. 深度学习原理与框架-Alexnet(迁移学习代码) 1.sys.argv[1:](控制台输入的参数获取第二个参数开始) 2.tf.split(对数据进行切分操作) 3.tf.concat(对数据进行合并操作) 4.tf.variable_scope(指定w的使用范围) 5.tf.get_variable(构造和获得参数) 6.np.load(加载.npy文件)

    1. sys.argv[1:]  # 在控制台进行参数的输入时,只使用第二个参数以后的数据 参数说明:控制台的输入:python test.py what, 使用sys.argv[1:],那么将获得w ...

  6. 学习TensorFlow,调用预训练好的网络(Alex, VGG, ResNet etc)

    视觉问题引入深度神经网络后,针对端对端的训练和预测网络,可以看是特征的表达和任务的决策问题(分类,回归等).当我们自己的训练数据量过小时,往往借助牛人已经预训练好的网络进行特征的提取,然后在后面加上自 ...

  7. Python之路第一课Day8--随堂笔记(socket 承接上节---网络编程)

    本节内容 Socket介绍 Socket参数介绍 基本Socket实例 Socket实现多连接处理 通过Socket实现简单SSH 通过Socket实现文件传送 作业:开发一个支持多用户在线的FTP程 ...

  8. 事件驱动之Twsited异步网络框架

    在这之前先了解下什么是事件驱动编程 传统的编程是如下线性模式的: 开始--->代码块A--->代码块B--->代码块C--->代码块D--->......--->结 ...

  9. [Android Pro] 网络流量安全测试工具Nogotofail

    reference to : http://www.freebuf.com/tools/50324.html 从严重的HeartBleed漏洞到苹果的gotofail 漏洞,再到最近的SSL v3 P ...

随机推荐

  1. [android] 内容观察者

    拦截短信,比如当发短信的时候,就把短信读取出来,当系统的短信发生变化的时候,大叫一声,把数据发送到公共的消息邮箱里面,我们的应用通过内容观察者观察公共的消息邮箱 获取ContentResolver对象 ...

  2. spring_02工具及接口案例

    1.spring工具类:ApplicationContextUtil.java,可以返回加载配置文件的容器对象 package com.ahd.utils; import org.springfram ...

  3. Java编程思想__内部类

    1.对象.new语法 类结构 public class Outer { public String oName; class Inner { public String iName; public v ...

  4. java集合框架-List集合ArrayList和LinkedList详解

    List 集合源码剖析 ✅ ArrayList 底层是基于数组,(数组在内存中分配连续的内存空间)是对数组的升级,长度是动态的. 数组默认长度是10,当添加数据超越当前数组长度时,就会进行扩容,扩容长 ...

  5. EJS-初识

    项目中使用了EJS,因此,也开始接触了EJS. EJS官方定义:it's just plain JavaScript. 总的来说,上手较快(毕竟我是个菜鸟). 第一步:安装: 第二部使用: 在html ...

  6. #WEB安全基础 : HTML/CSS | 0x3文件夹管理网站

    没有头脑的管理方式会酿成大灾难,应该使用文件夹管理网站 这是一个典型的管理方法,现在传授给你,听好了 下面是0x3初识a标签里使用的网站的目录,我把它重新配置了一下

  7. es6 语法 (Generator)

    { // 长轮询 let ajax=function* (){ yield new Promise(function(resolve,reject){ setTimeout(function () { ...

  8. Java 导出 Excel 列号数字与字母互相转换工具

    package test; /** * Deal with Excel column indexToStr and strToIndex * @author * @version 2015-7-8 * ...

  9. [代码笔记]VUE路由根据返回状态判断添加响应拦截器

    //返回状态判断(添加响应拦截器) Axios.interceptors.response.use( res => { //对响应数据做些事 if (res.data && !r ...

  10. tomcat闪退解决

    异常原因:拷贝了一个tomcat到新机器上,运行startup闪退 解决方法: 1.检查发现当前系统没有安装配置jdk,安装配置后运行仍然闪退 2.在tomcat的启动脚本和关闭脚本中指定JDK和to ...