洛谷P5245 【模板】多项式快速幂(多项式ln 多项式exp)
题意
Sol
\(B(x) = \exp(K\ln(A(x)))\)
做完了。。。
复杂度\(O(n\log n)\)
// luogu-judger-enable-o2
// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
#define LL long long
#define ull unsigned long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 4e5 + 10, INF = 1e9 + 10, INV2 = 499122177;
const double eps = 1e-9, pi = acos(-1);
const int G = 3, mod = 998244353;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = (1ll * x * 10 + c - '0') % mod, c = getchar();
return x * f;
}
int N, K, a[MAXN], b[MAXN];
namespace Poly {
int rev[MAXN], GPow[MAXN], A[MAXN], B[MAXN], C[MAXN], lim;
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
int fp(int a, int p, int P = mod) {
int base = 1;
for(; p; p >>= 1, a = 1ll * a * a % P) if(p & 1) base = 1ll * base * a % P;
return base;
}
int GetLen(int x) {
int lim = 1;
while(lim <= x) lim <<= 1;
return lim;
}
int GetLen2(int x) {
int lim = 1;
while(lim <= x) lim <<= 1;
return lim;
}
int GetOrigin(int x) {//¼ÆËãÔ¸ù
static int q[MAXN]; int tot = 0, tp = x - 1;
for(int i = 2; i * i <= tp; i++) if(!(tp % i)) {q[++tot] = i;while(!(tp % i)) tp /= i;}
if(tp > 1) q[++tot] = tp;
for(int i = 2, j; i <= x - 1; i++) {
for(j = 1; j <= tot; j++) if(fp(i, (x - 1) / q[j], x) == 1) break;
if(j == tot + 1) return i;
}
}
void Init(int Lim) {
for(int i = 1; i <= Lim; i++) GPow[i] = fp(G, (mod - 1) / i);
}
void NTT(int *A, int lim, int opt) {
int len = 0; for(int N = 1; N < lim; N <<= 1) ++len;
for(int i = 1; i <= lim; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (len - 1));
for(int i = 0; i <= lim; i++) if(i < rev[i]) swap(A[i], A[rev[i]]);
for(int mid = 1; mid < lim; mid <<= 1) {
int Wn = GPow[mid << 1];
for(int i = 0; i < lim; i += (mid << 1)) {
for(int j = 0, w = 1; j < mid; j++, w = mul(w, Wn)) {
int x = A[i + j], y = mul(w, A[i + j + mid]);
A[i + j] = add(x, y), A[i + j + mid] = add(x, -y);
}
}
}
if(opt == -1) {
reverse(A + 1, A + lim);
int Inv = fp(lim, mod - 2);
for(int i = 0; i <= lim; i++) mul2(A[i], Inv);
}
}
void Mul(int *a, int *b, int N, int M) {
memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B));
int lim = 1, len = 0;
while(lim <= N + M) len++, lim <<= 1;
for(int i = 0; i <= N; i++) A[i] = a[i];
for(int i = 0; i <= M; i++) B[i] = b[i];
NTT(A, lim, 1); NTT(B, lim, 1);
for(int i = 0; i <= lim; i++) B[i] = mul(B[i], A[i]);
NTT(B, lim, -1);
for(int i = 0; i <= N + M; i++) b[i] = B[i];
memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B));
}
void Inv(int *a, int *b, int len) {//B1 = 2B - A1 * B^2
if(len == 1) {b[0] = fp(a[0], mod - 2); return ;}
Inv(a, b, len >> 1);
for(int i = 0; i < len; i++) A[i] = a[i], B[i] = b[i];
NTT(A, len << 1, 1); NTT(B, len << 1, 1);
for(int i = 0; i < (len << 1); i++) mul2(A[i], mul(B[i], B[i]));
NTT(A, len << 1, -1);
for(int i = 0; i < len; i++) add2(b[i], add(b[i], -A[i]));
for(int i = 0; i < (len << 1); i++) A[i] = B[i] = 0;
}
void Dao(int *a, int *b, int len) {
for(int i = 1; i < len; i++) b[i - 1] = mul(i, a[i]); b[len - 1] = 0;
}
void Ji(int *a, int *b, int len) {
for(int i = 1; i < len; i++) b[i] = mul(a[i - 1], fp(i, mod - 2)); b[0] = 0;
}
void Ln(int *a, int *b, int len) {//G(A) = \frac{A}{A'} qiudao zhihou jifen
static int A[MAXN], B[MAXN];
Dao(a, A, len);
Inv(a, B, len);
NTT(A, len << 1, 1); NTT(B, len << 1, 1);
for(int i = 0; i < (len << 1); i++) B[i] = mul(A[i], B[i]);
NTT(B, len << 1, -1);
Ji(B, b, len << 1);
memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B));
}
void Exp(int *a, int *b, int len) {//F(x) = F_0 (1 - lnF_0 + A) but code ..why....
if(len == 1) return (void) (b[0] = 1);
Exp(a, b, len >> 1); Ln(b, C, len);
C[0] = add(a[0] + 1, -C[0]);
for(int i = 1; i < len; i++) C[i] = add(a[i], -C[i]);
NTT(C, len << 1, 1); NTT(b, len << 1, 1);
for(int i = 0; i < (len << 1); i++) mul2(b[i], C[i]);
NTT(b, len << 1, -1);
for(int i = len; i < (len << 1); i++) C[i] = b[i] = 0;
}
void Sqrt(int *a, int *b, int len) {
static int B[MAXN];
Ln(a, B, len);
for(int i = 0; i < len; i++) B[i] = mul(B[i], INV2);
Exp(B, b, len);
}
void Div(int *F, int *G, int *Q, int *R, int N, int M) {//F(n) = G(m) * Q(n - m + 1) + R(m)
static int Ginv[MAXN]; memset(Ginv, 0, sizeof(Ginv));
reverse(F, F + N + 1); reverse(G, G + M + 1);
Inv(G, Ginv, GetLen2(N - M));//why not M
Mul(F, Ginv, N - M, N - M);
for(int i = 0; i <= N - M; i++) Q[i] = Ginv[i];
reverse(Q, Q + N - M + 1);
reverse(F, F + N + 1); reverse(G, G + M + 1);
Mul(Q, G, N - M, M);
for(int i = 0; i < M; i++) R[i] = add(F[i], -G[i]);
}
void Pow(int *a, int *b, int P, int N, int len) {
static int tx[MAXN], ty[MAXN]; memset(tx, 0, sizeof(tx)); memset(ty, 0, sizeof(ty));
Ln(a, tx, len);
for(int i = 0; i < N; i++) ty[i] = mul(P, tx[i]);
Exp(ty, b, len);
}
};
using namespace Poly;
signed main() {
N = read(); K = read();
Init(4 * N);
for(int i = 0; i < N; i++) a[i] = read();
Pow(a, b, K, N, GetLen(N));
for(int i = 0; i < N; i++) cout << b[i] << ' ';
return 0;
}
/*
4 1242412412412412412421421
1 1 0 0
*/
洛谷P5245 【模板】多项式快速幂(多项式ln 多项式exp)的更多相关文章
- 【洛谷P3390】矩阵快速幂
矩阵快速幂 题目描述 矩阵乘法: A[n*m]*B[m*k]=C[n*k]; C[i][j]=sum(A[i][1~n]+B[1~n][j]) 为了便于赋值和定义,我们定义一个结构体储存矩阵: str ...
- 洛谷 P1965 转圈游戏 —— 快速幂
题目:https://www.luogu.org/problemnew/show/P1965 居然真的就只是 ( x + m * 10k % n ) % n 代码如下: #include<ios ...
- 洛谷 P1226 【模板】快速幂||取余运算
题目链接 https://www.luogu.org/problemnew/show/P1226 题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 ...
- [SDOI2015]序列统计(多项式快速幂)
题目描述 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S.小C用这个生成器生成了许多这样的数列.但是小C有一个问 ...
- 【xsy2479】counting 生成函数+多项式快速幂
题目大意:在字符集大小为$m$的情况下,有多少种构造长度为$n$的字符串$s$的方案,使得$C(s)=k$.其中$C(s)$表示字符串$s$中出现次数最多的字符的出现次数. 对$998244353$取 ...
- 【bzoj3684】 大朋友和多叉树 生成函数+多项式快速幂+拉格朗日反演
这题一看就觉得是生成函数的题... 我们不妨去推下此题的生成函数,设生成函数为$F(x)$,则$[x^s]F(x)$即为答案. 根据题意,我们得到 $F(x)=x+\sum_{i∈D} F^i(x)$ ...
- BZOJ3645: Maze(FFT多项式快速幂)
Description 众维拉先后在中土大陆上创造了精灵.人类以及矮人,其中矮人是生性喜好常年居住在地下的洞穴的存在,他们挖掘矿物甚至宝石,甚至用他们的勤劳勇敢智慧在地底下创造出了辉煌宏大的宫殿,错综 ...
- AtCoder AGC019E Shuffle and Swap (DP、FFT、多项式求逆、多项式快速幂)
题目链接 https://atcoder.jp/contests/agc019/tasks/agc019_e 题解 tourist的神仙E题啊做不来做不来--这题我好像想歪了啊= =-- 首先我们可以 ...
- luoguP5219 无聊的水题 I 多项式快速幂
有一个幼儿园容斥:最大次数恰好为 $m=$ 最大次数最多为 $m$ - 最大次数最多为 $m-1$. 然后来一个多项式快速幂就好了. code: #include <cmath> #in ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
随机推荐
- Tomcat 部署项目无法加载静态资源
首先,我的Eclipse是引用外部的Tomcat 引用外部Tomcat会在左侧生成一个Server文件夹,相当于复制了一份Tomcat到Eclipse的安装目录里 具体Tomcat所在目录可以在这进行 ...
- swiper轮播在ie浏览器上遇到的显示问题探索
前言: 最近项目有一个需求,想要下图效果,鼠标指向头像图片,图片会放大同时上面的轮播会跟着切换: 鼠标移开头像图片,图片变回原来的大小 注:下图是我根据上面需求已经实现的效果,所以截图方便说明 思考: ...
- OAuth2简易实战(一)-四种模式
1. OAuth2简易实战(一)-四种模式 1.1. 授权码授权模式(Authorization code Grant) 1.1.1. 流程图 1.1.2. 授权服务器配置 配置授权服务器中 clie ...
- SpringCache学习实践
1. SpringCache学习实践 1.1. 引用 <dependency> <groupId>org.springframework.boot</groupId> ...
- 安卓Listview和Adapter数据设计
ListView是一种用于垂直显示的列表控件,如果显示内容过多,则会自动出现垂直滚动条,每一行是一个View对象,在每一行上可以放置任何组件,Adapter适配器是数据和UI的桥梁,为数据显示提供了统 ...
- Linux下安装、启动、停止mongodb
1.下载完安装包,并解压 tgz(以下演示的是 64 位 Linux上的安装) curl .tgz # 下载 tar .tgz # 解压 mv mongodb/ /usr/local/mongodb ...
- Java核心技术及面试指南 数据库方面的面试题归纳以及总结
5.1.7.1 事务的四大特性是什么? ⑴ 原子性(Atomicity) 原子性是指事务包含的所有操作要么全部成功,要么全部失败回滚. ⑵ 一致性(Consistency) 一致性是指事务必须使数据库 ...
- 解决关于 ionic3 启动白屏 控制台错误提示:Uncaught SyntaxError Use of const in strict mode.
今天将项目从ionic2 升级为ionic3 ,ionic serve 运行在网页上无任何错误. 但是将项目打包成为android apk 却一直卡在启动页面 白屏,进不去的情况.后来在android ...
- javaScript笔记详解(1)
javaScript基础详解 版权声明 本文原创作者:雨点的名字 作者博客地址:https://home.cnblogs.com/u/qdhxhz/ 首先讲javaScript的摆放位置:<sc ...
- 另类SQL拼接方法
在编写SQL的时候经常需要对SQL进行拼接,拼接的方式就是直接String+处理,但这种情况有个不好的地方就是不能对SQL进行参数化处理.下面介绍一种就算基于String +的方式也可以进行SQL参数 ...